

RichDEM — High-Performance Terrain Analysis

	RichDEM
	Documentation

	Design Philosophy

	Parsable Output

	Citing RichDEM

	Ways To Use It
	Python package from PyPI

	Python package from source

	As A Command-line Tool

	As A Library

	As A Handy Collection of Tools

	For Processing Large Datasets

Operations

	Concepts
	Gridded Data

	Metadata

	Geotransform

	NoData values

	Processing History

	In-Place Operations

	Topology

	Example DEMs

	Loading Data
	Python

	C++

	Depression-Filling
	Depressions, Pits, and Sinks

	Original DEM

	Complete Filling

	Epsilon Filling

	Depression-Breaching
	Depressions, Pits, and Sinks

	Original DEM

	Complete Breaching

	Flat Resolution
	Barnes (2014) Flat Resolution

	Flow Metric Adjustment

	Flow Metrics
	Flow Coordinate System

	Convergent and Divergent Metrics

	Note on the examples

	D8 (O’Callaghan and Mark, 1984)

	D4 (O’Callaghan and Mark, 1984)

	Rho8 (Fairfield and Leymarie, 1991)

	Rho4 (Fairfield and Leymarie, 1991)

	Quinn (1991)

	Freeman (1991)

	Holmgren (1994)

	D∞ (Tarboton, 1997)

	Side-by-Side Comparisons of Flow Metrics

	Accessing Flow Proportions Directly

	Flow Accumulation
	From Flow Proportions

	Terrain Attributes
	Slope

	Aspect

	Profile Curvature

	Planform Curvature

	Curvature

Examples

	Python Examples
	Depression-filling a DEM and saving it

	Comparing filled vs. unfilled DEMs

	The rdarray class

	Using RichDEM without GDAL

API

	RichDEM C++ Reference

	RichDEM Python Reference

Testing and Correctness

	Testing Methodology

	Correctness

Extra Information

	Specific Algorithms

	Publications

	Sponsors

	Feedback

For Developers

	Release Steps

RichDEM

RichDEM is a set of digital elevation model (DEM) hydrologic analysis tools.
RichDEM uses parallel processing and state of the art algorithms to quickly
process even very large DEMs.

RichDEM offers a variety of flow metrics, such as D8 and D∞. It can flood or
breach depressions. It can calculate flow accumulation, slops, curvatures, &c.

RichDEM is available as a performant C++ library, a low-dependency Python
package, and a set of command-line tools.

Please cite RichDEM (see below).

Documentation

Documentation is available at richdem.readthedocs.io [https://richdem.readthedocs.io/].
The documentation is auto-generated from the many README.md files throughout
the codebase and the extensive comments in the source code.

Design Philosophy

The design of RichDEM is guided by these principles:

	Algorithms will be well-tested. Every algorithm is verified by a rigorous
testing procedure. See below.

	Algorithms will be fast, without compromising safety and accuracy. The
algorithms used in RichDEM are state of the art, permitting analyses that
would take days on other systems to be performed in hours, or even minutes.

	Algorithms will be available as libraries, whenever possible. RichDEM is
designed as a set of header-only C++ libraries, making it easy to include in
your projects and easy to incorporate into other programming languages.
RichDEM also includes apps, which are simple wrappers around the algorithms,
and a limited, but growing, set of algorithms which may have special
requirements, like MPI, that make them unsuitable as libraries. These are
available as programs.

	Programs will have a command-line interface, not a GUI. Command-line
interfaces are simple to use and offer extreme flexibility for both users and
programmers. They are available on every type of operating system. RichDEM
does not officially support any GUI. Per the above, encapsulating RichDEM in
a high-level interface of your own is not difficult.

	Algorithms and programs will be portable. Linux, Mac, and Windows should
all be supported.

	The code will be beautiful. RichDEM’s code utilizes sensible variable
names and reasonable abstractions to make it easy to understand, use, and
design algorithms. The code contains extensive internal documentation which is
DOxygen compatible.

	Programs and algorithms will provide useful feedback. Progress bars will
appear if desired and the output will be optimized for machine parsing.

	Analyses will be reproducible. Every time you run a RichDEM command that
command is logged and timestamped in the output data, along with the version
of the program you created the output with. Additionally, a history of all
previous manipulations to the data is kept. Use rd_view_processing_history
to see this.**

Parsable Output

Every line of output from RichDEM begins with one of the following characters,
making it easy to parse with a machine.

	Tag

	Meaning

	A

	Algorithm name

	a

	Analysis command: the command line used to run the program

	c

	Configuration information: program version, input files, and command line options, &c.

	C

	Citation for algorithm

	d

	Debugging info

	E

	Indicates an error condition

	i

	I/O: Amount of data loaded from disk

	m

	Miscallaneous counts

	n

	I/O: Amount of data transferred through a network

	p

	Progress information: inform the user to keep calm because we’re carrying on.

	r

	Amount of RAM used

	t

	Timing information: How long stuff took

	W

	Indicates a warning

All output data shall have the form:

<INDICATOR TAG> <MESSAGE/MEASUREMENT NAME> [= <VALUE> [UNIT]]

The amount of whitespace may very for aesthetic purposes.

Citing RichDEM

As of 883ea734e957, David A. Wheeler’s SLOCCount estimates the value of RichDEM
at $240,481 and 1.78 person-years of development effort. This value is yours to
use, but citations are encouraged as they provide justification of continued
development.

General usage of the library can be cited as:

Barnes, Richard. 2016. RichDEM: Terrain Analysis Software. http://github.com/r-barnes/richdem

An example BibTeX entry is:

	@manual{RichDEM,

	title = {RichDEM: Terrain Analysis Software},
author = {Richard Barnes},
year = {2016},
url = {http://github.com/r-barnes/richdem}

}

This information will be updated as versioned releases become available.

Although I have written all of the code in this library, some of the algorithms
were discovered or invented by others, and they deserve credit for their good
work. Citations to particular algorithms will be printed whenever an app,
program, or library function is run. Such citations are prefixed by the
character C and look like:

C Barnes, R., Lehman, C., Mulla, D., 2014. Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation models. Computers & Geosciences 62, 117–127. doi:10.1016/j.cageo.2013.04.024

A typical academic citation might read as follows:

> We performed hydrological corrections on our DEM using the Zhou (2016) algorithm implemented in RichDEM (Barnes 2016).

Ways To Use It

Python package from PyPI

Get the package with:

pip3 install richdem

And use:

import richdem

The command:

help(richdem)

provides all the relevant documentation.

Python package from source

Enter the wrappers/pyrichdem directory and run:

python3 setup.py install --user

As A Command-line Tool

To get the command-line tools, install the Python package with:

pip3 install richdem

The command-line tools are all named rd_*, so typing rd_ on your command-
line and hitting tab a few times should give you the full list of what’s
available.

As A Library

As an overview, upon compilation, point your library search path to the
richdem/include directory. Include various files using, e.g.

#include "richdem/common/Array2D.hpp"

All files include extensive documentation. At this stage the location of certain
functions may be subject to change. This will be noted in the NEWS file. (TODO)

More concretely, there are a number of compilation options to consider. With the
GCC compiler the flag FLAG is activated by passing the -DFLAG command-line
argument.

	NOPROGRESS turns off progress bars

	RICHDEM_DEBUG turns on line numbers and filenames in RichDEM’s output

	RICHDEM_LOGGING turns on outputs such as notices about memory allocation,
intermediate products, various progress indicators, and so on. Enabling this
requires inclusion of the richdem.cpp file.

	RICHDEM_GIT_HASH. this should be set to the git hash of the code you checked
out. A value of RICHDEM_GIT_HASH=$(git rev-parse HEAD) is usually good.

	RICHDEM_COMPILE_TIME. Date and time the code was compiled. A value of
RICHDEM_COMPILE_TIME=$(date -u +'%Y-%m-%d %H:%M:%S UTC') is usually good.

	USEGDAL. Indicates that GDAL functionality should be included in the
library. This allows reading/writing rasters from various file types. It also
complicates compilation slightly, as discussed below.

	NDEBUG turns off a bunch of range-checking stuff included in the standard
library. Increases speed slightly, butm akes debugging crashes and such more
difficult.

Setting up compilation works like this:

CXXFLAGS="--std=c++11 -g -O3 -Wall -Wno-unknown-pragmas -Irichdem/include"
CXXFLAGS="$CXXFLAGS -DRICHDEM_LOGGING"

C++11 or higher is necessary to compile. Include other RichDEM flags as desired.
Note that the -g flag doesn’t slow things down, though it does increase the
size of your executable somewhat. It’s inclusion is always recommended for
anything other than distributed production code because it makes debugging much
easier. The -O3 flag should be replaced by an optimization level or set of
your choice. -Wno-unknown-pragmas hides warning messages from OpenMP if you
choose not to compile with it. -Wall produces many helpful warning messages;
compiling without -Wall is foolish. -Irichdem/include connects your code
with RichDEM.

If you plan to use GDAL, include the following:

GDAL_LIBS="`gdal-config --libs`"
GDAL_CFLAGS="`gdal-config --cflags` -DUSEGDAL"
LIBS="$GDAL_LIBS"
CXXFLAGS="$CXXFLAGS $GDAL_CFLAGS"

If you plan to use RichDEM’s parallel features include the following:

LIBS=”$LIBS -fopenmp”

Finally, put it all together:

g++ $CXXFLAGS -o my_program.exe my_program.cpp $LIBS

As A Handy Collection of Tools

Running make in the apps directory will produce a large number of useful
scripts which are essentially wrappers around standard uses of the RichDEM
libraries. The apps/README.md file and the apps themselves
contain documentation explaining what they all do.

For Processing Large Datasets

The programs directory contains several programs which have not been converted
to libraries. This is usually because their functionality is specific and they
are unlikely to be useful as a library. Each directory contains a makefile and a
readme explaining the purpose of the program.

Concepts

Gridded Data

RichDEM assumes that data is provided in the form of a rectangular grid of cells
with some width and height. Furthermore, the data comprising this grid must
be laid out in a flat array such that the value of any cell (x,y) can be
accessed via the equation y*width+x. This is known as row-major ordering.

Data can be passed to RichDEM in one of three ways.

	Data can be loaded via GDAL. GDAL handles the heavy lifting of ensuring
that data is loaded in a form which complies with the above assumptions.

	Data can be manually added to a richdem::Array2D object (C++) or a
richdem.rdarray object (Python).

	A richdem::Array2D (C++) or richdem.rdarray (Python) object can be
used to wrap existing row-major memory. This capability allows RichDEM to
easily integrate with existing code.

Metadata

A RichDEM array is accompanied by several kinds of metadata. These can be loaded
by GDAL or specified manually.

	A NoData value, as discussed below.

	A projection. This is, typically, a PROJ4 or WKT string that identifies
the projection the data maps to. The choice of projection does not affect
RichDEM’s operations.

	A geotransform. This is a six element array which determines where in a
projection a RichDEM array’s data is located, as well as the cell sizes.
Further details are below. This setting does affect how RichDEM processes
data.

	A metadata entry which contains arbitrary metadata strings such as
PROCESSING_HISTORY (see below).

Geotransform

A geotransform is a six element array which determines where in a
projection a RichDEM array’s data is located, as well as the cell sizes.

Typically, the geotransform is an affine transform consisting of six
coefficients which map pixel/line coordinates into a georeferenced space using
the following relationship:

Xgeo = GT(0) + Xpixel*GT(1) + Yline*GT(2)
Ygeo = GT(3) + Xpixel*GT(4) + Yline*GT(5)

In case of north up images, the GT(2) and GT(4) coefficients are zero, and
the GT(1) is pixel width, and GT(5) is pixel height. The (GT(0),GT(3))
position is the top left corner of the top left pixel of the raster.

Note that the pixel/line coordinates in the above are from (0.0,0.0) at the
top left corner of the top left pixel to (width_in_pixels,height_in_pixels) at
the bottom right corner of the bottom right pixel. The pixel/line location of
the center of the top left pixel would therefore be (0.5,0.5)

(Text drawn from GDAL documentation.)

NoData values

RichDEM recognizes cells with a NoData value and treats them in special ways.
The NoData value is a number, such as -9999 which represents a cell that
isn’t part of a data set.

In depression-filling and the determination of flow directions, NoData cells
are treated as having a lower elevation than any other cell, which enforces
drainage to the edge of the DEM.

Because NoData values fundamental affect operations, RichDEM requires that you
specify what NoData value it should use.

It is important that you choose a value that doesn’t correspond to any of your
actual data values. In 1-byte/8-bit DEMs this may not be possible since there
are only 256 distinct values available. In this case, you should cast your data
to a 2-byte/16-bit form and choose a NoData value that is not in the range
0-255.

Other terrain analysis programs may use a binary masking array to indicate which
cells are NoData. RichDEM does not do this because usually a minority of cells
are NoData and a separate array increases the amount of memory used and
reduces cache utilization, both of which may reduce performance.

	Language

	Set

	Get

	Python

	rda.no_data=-1

	rda.no_data

	C++

	rda.setNoData(-1)

	rda.noData()

Processing History

RichDEM automagically keeps track of what operations are performed on your data.
This means that your outputs will contain an exact record of what operations
were used to produce them. This helps ensure reproducibility. And, remember,
good science is reproducible science.

In the following, a series of operations is performed and the Processing History
is then examined.

import richdem as rd
dem = rd.LoadGDAL("../data/beauford.tif")
rd.FillDepressions(dem, epsilon=False, in_place=True)
accum = rd.FlowAccumulation(dem, method='D8')
rd.SaveGDAL('/z/out.tif', accum)
print(accum.metadata['PROCESSING_HISTORY'])

The processing history of a saved dataset can be viewed using a few different
commands:

gdalinfo /z/out.tif
rd_info /z/out.tif

The processing history appears as follows.

2017-12-20 17:55:19.892388 UTC | RichDEM (Python 0.0.4) (hash=e02d5e2, hashdate=2017-12-19 23:52:52 -0600) | LoadGDAL(filename=../data/beauford.tif, no_data=-9999.0)
2017-12-20 17:55:19.900234 UTC | RichDEM (Python 0.0.4) (hash=e02d5e2, hashdate=2017-12-19 23:52:52 -0600) | FillDepressions(dem, epsilon=False)
2017-12-20 17:55:20.514098 UTC | RichDEM (Python 0.0.4) (hash=e02d5e2, hashdate=2017-12-19 23:52:52 -0600) | FlowAccumulation(dem, method=D8)

Note that the first column is the time at which the operation was performed,
the second column is the program which performed the operation, and the
third column is the command which was run.

	Language

	Command

	Python

	rda.metadata

	C++

	rda.metadata

In-Place Operations

To save memory RichDEM performs some operations, such as depression-filling, in
place. This means that the data is modified and the original data will be lost
unless it has been copied.

For instance, in Python FillDepressions has two distinct forms:

#In-place filling, no return value
rd.FillDepressions(dem, in_place=True)
#Fill a copy
dem_filled = rd.FillDepressions(dem, in_place=False)

whereas in C++, a copy must be made:

#In-place filling, no return value
richdem::FillDepressions(dem)

#Fill a copy
auto demcopy = dem; //TODO: Make sure this syntax is right
richdem::FillDepressions(demcopy)

Topology

RichDEM offers two topologies, though not all functions differentiate between
them. Thse are:

	
	D8: The cells are arranged in a regular, rectilinear grid. Each cell

	connects with each of its neighbouring cells.

	
	D4: The cells are arranged in a regular, rectilnear grid. Each cell

	connects with the cells to its north, south, east, and west (the
cells up, down, left, and right of it).

In C++, the foregoing topologies are accessed via the Topology
enumeration, similar to the following:

FillDepressions<Topology::D8>(dem);
FillDepressions<Topology::D4>(dem);

Example DEMs

Beauford Watershed, Minnesota, USA is frqeuently used as an example dataset.

import richdem as rd
import numpy as np

beau = rd.rdarray(np.load('imgs/beauford.npz')['beauford'], no_data=-9999)

rd.rdShow(beau, ignore_colours=[0], axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/beauford_example-1.png]

Loading Data

Python

Data can be loaded in several ways.

To load from disk, if GDAL is available on your system, almost any form of
raster data can be easily loaded, like so:

GDAL

import richdem as rd
beau = rd.LoadGDAL("beauford.tif")

NumPy

Data can also be loaded from a NumPy array:

import numpy as np
import richdem as rd

npa = np.random.random(size=(50,50))
rda = rd.rdarray(npa, no_data=-9999)

Note that !`rd.rdarray()` creates a view of the data stored in !`npa`.
Modifying rda will modify npa. This prevents unwanted memory from being
used. If you instead want rda to be a new copy of the data, use:

rda = rd.rdarray(a, no_data=-9999)

Saved NumPy Arrays

It is possible to save, and load, data to and from a NumPy array like so:

import numpy as np
import richdem as rd

npa = np.random.random(size=(50,50))
rda = rd.rdarray(npa, no_data=-9999)
np.save('out.npy', rda)
loaded = rd.rdarray(np.load('out.npy'), no_data=-9999)

This can be done in a compressed format like so:

np.savez('rda', rda=rda)
np.load('rda.npz')['rda']

Note that there is not yet a way to save the metadata of an rdarray. (TODO)

C++

TODO

Depression-Filling

Depressions, otherwise known as pits, are areas of a landscape wherein flow
ultimately terminates without reaching an ocean or the edge of a digital
elevation model.

Depressions, Pits, and Sinks

Depressions have been called by a variety of names. To clarify this mess,
Lindsay (2016) provides a typology. This typology is followed here.

[image: _images/Lindsay2016_depression_typology.png]

Original DEM

For reference, the original DEM appears as follows:

import richdem as rd
import numpy as np

beau = rd.rdarray(np.load('imgs/beauford.npz')['beauford'], no_data=-9999)
beaufig = rd.rdShow(beau, ignore_colours=[0], axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/depression_original-1.png]

Complete Filling

Depression-filling is often used to fill in all the depressions in a DEM to the
level of their lowest outlet or spill-point.

The result looks as follows:

beau_filled = rd.FillDepressions(beau, in_place=False)
beaufig_filled = rd.rdShow(beau_filled, ignore_colours=[0], axes=False, cmap='jet', vmin=beaufig['vmin'], vmax=beaufig['vmax'], figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/depression_complete-2.png]

We can visualize the difference between the two like so:

beau_diff = beau_filled - beau
beaufig_diff = rd.rdShow(beau_diff, ignore_colours=[0], axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/depression_complete_original_diff-3.png]

Complete Filling is available via the following commands:

	Language

	Command

	Python

	richdem.FillDepressions

	C++

	richdem::FillDepression<Topology>

	Pros

	Cons

	
	Fast

	Simple

	
	Leaves flat regions behind

	May modify large portions of a DEM

Epsilon Filling

A downside of complete filling is that it replaces depressions with a perfectly
flat region with no local gradients. One way to deal with this is to ensure that
every cell in the region is raised some small amount, ε, above cells which are
closer to a depression’s spill point.

This must be done carefully. In floating-point DEMs, the value ε is non-constant
and must be chosen using the !`std::nextafter` function. If a depression is too
large, the imposed gradient may result in the interior of the depression being
raised above the surrounding landscape. Using double instead of float
reduces the potential for problems at a cost of twice the space used. If a
problem does arise, RichDEM provides a warning.

We can visualize the difference between the epsilon-filled DEM and the original
DEM like so:

beau_epsilon = rd.FillDepressions(beau, epsilon=True, in_place=False)
beau_eps_diff = beau_epsilon - beau
beaufig_eps_diff = rd.rdShow(beau_eps_diff, ignore_colours=[0], axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/depression_eps_diff-4.png]

We can visualize the difference between the epsilon-filled DEM and the
completely-filled DEM as follows. Note that elevation increases with distance
from the depression’s outlet: this is the effect of the epsilon.

beau_diffeps_diff = beau_epsilon - beau_filled
beaufig_diffeps_diff = rd.rdShow(beau_diffeps_diff, ignore_colours=[0], axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/depression_filled_eps_diff-5.png]

	Language

	Command

	Python

	richdem.FillDepressions

	C++

	richdem::FillDepressionsEpsilon<Topology>()

	Pros

	Cons

	
	All cells drain

	
	Not as fast as simple depression filling

	May modify large portions of a DEM

	May create elevated regions

	Success may depend on data type

Depression-Breaching

Depressions, otherwise known as pits, are areas of a landscape wherein flow
ultimately terminates without reaching an ocean or the edge of a digital
elevation model.

Depressions, Pits, and Sinks

Depressions have been called by a variety of names. To clarify this mess,
Lindsay (2016) provides a typology. This typology is followed here.

[image: _images/Lindsay2016_depression_typology.png]

Original DEM

For reference, the original DEM appears as follows:

import richdem as rd
import numpy as np

beau = rd.rdarray(np.load('imgs/beauford.npz')['beauford'], no_data=-9999)
beaufig = rd.rdShow(beau, ignore_colours=[0], axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/depression_breach_original-1.png]

Complete Breaching

Depression-breaching is used to dig channels from the pit cells of a DEM to the
nearest cells (in priority-flood sense) outside of the depression containing the
pit. This resolves the depression as all cells in the depression now have a
drainage path to the edge of the DEM.

The result looks as follows:

beau_breached = rd.BreachDepressions(beau, in_place=False)
beaufig_breached = rd.rdShow(beau_breached, ignore_colours=[0], axes=False, cmap='jet', vmin=beaufig['vmin'], vmax=beaufig['vmax'], figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/breaching_complete-2.png]

We can visualize the difference between the two like so:

beau_diff = beau_breached - beau
beaufig_diff = rd.rdShow(beau_diff, ignore_colours=[0], axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/depression_complete_breached_original_diff-3.png]

Complete Breaching is available via the following commands:

	Language

	Command

	Python

	richdem.BreachDepressions

	C++

	richdem::BreachDepressions<Topology>()

	Pros

	Cons

	
	Minimal Modifcations to DEM

	Simple

	
	Slightly slower

Flat Resolution

The problem with doing complete filling on flats is that the resulting DEM
contains mathematically flat areas with no local gradient. This makes it
impossible to determine flow directions for these areas.

Imposing an epsilon gradient during depression-filling is one solution as
discussed in Epsilon Filling (Epsilon Filling); however, the
gradient produced may appear unaesthetic because drainage takes a least-distance
route to the flat’s edges.

We stress the word aesthetic here since, after depression-filling, no
information about local gradients remains from the original DEM, so, in a sense,
all reconstructed drainage patterns are equally silly. Sometimes, though, this
is the best you can do.

This pages discusses alternatives.

Barnes (2014) Flat Resolution

Barnes, R., Lehman, C., Mulla, D., 2014a. An efficient assignment of drainage direction over flat surfaces in raster digital elevation models. Computers & Geosciences 62, 128–135. doi:10.1016/j.cageo.2013.01.009

The Barnes (2014) flat resolution algorithm routes flow both towards the edges
of flats and away from the high areas surrounding them. The result is an
aesthetically pleasing drainge pattern.

It can do so either by adjust the elevations of the DEM’s cells or by adjusting
flow metrics derived from the DEM.

Elevation Adjustment

In this method, the elevation of a DEM can be adjusted so that every cell in the
region is raised some small amount, ε, above cells which are closer to a
depression’s spill point and farther from its surrounding high areas.

This must be done carefully. In floating-point DEMs, the value ε is non-constant
and must be chosen using the !`std::nextafter` function. If a depression is too
large, the imposed gradient may result in the interior of the depression being
raised above the surrounding landscape. Using double instead of float
reduces the potential for problems at a cost of twice the space used. If a
problem does arise, RichDEM provides a warning.

Recall from Epsilon Filling (Epsilon Filling) that an epsilon
gradient imposed during depression-filling results in an elevation adjustment
that looks like this:

import richdem as rd
import numpy as np

#Load dataset
beau = rd.rdarray(np.load('imgs/beauford.npz')['beauford'], no_data=-9999)

#Fill the depression entirely
beau_filled = rd.FillDepressions(beau, epsilon=False, in_place=False)

#Construct the epsilon drainage surface via filling
beau_eps = rd.FillDepressions(beau, epsilon=True, in_place=False)

diff = beau_eps - beau_filled
rd.rdShow(diff, ignore_colours=[0], axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/flat_resolution_dep_fill_epsilon-1.png]

In contrast, the Barnes (2014) convergent elevation adjustment looks like this:

#Resolve flats by imposing a convergent epsilon gradient
beau_flat_eps = rd.ResolveFlats(beau_filled, in_place=False)

diff = beau_flat_eps - beau_filled
rd.rdShow(diff, ignore_colours=[0], axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/flat_resolution_barnes2014_epsilon-2.png]

The difference versus the depression-filling epsilon adjustment appears as
follows. Note the deep V-shaped notches in the flats indicating the increased
convergence of the Barnes (2014) method.

diff = beau_flat_eps - beau_eps
rd.rdShow(diff, ignore_colours=[0], axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/flat_resolution_diff_df_b2014-3.png]

	Language

	Command

	Python

	richdem.rdResolveFlats

	C++

	richdem::ResolveFlatsEpsilon()

	Pros

	Cons

	
	All cells drain

	
	Not as fast as simple depression filling

	May modify large portions of a DEM

	May create elevated regions

	Success may depend on data type

Flow Metric Adjustment

TODO

Flow Metrics

A flow metric is a rule which apportions the flow passing through a cell into
one or more of its neighbours.

The problem of how to best do this has been considered many times, since it is
difficult to discretize flow onto a grid, and a number of solutions have been
presented. Rather than choosing one, RichDEM instead incorporates many and
leaves it to the user to decide which is appropriate.

Below, the various flow metrics included in RichDEM are discussed.

Wherever possible, algorithms are named according to the named according to
their creators as well as by the name the authors gave the algorithm. For
instance, FM_Rho8 and FM_FairfieldLeymarieD8 refer to the same function.

All flow metric functions are prefixed with !`FM_`.

Note that, in some cases, it is difficult or impossible to include a flow metric
because the authors have included insufficient detail in their manuscript and
have not provided source code. In these cases, the flow metric will either be
absent or a “best effort” attempt has been made at implementation.

Flow Coordinate System

Internally, RichDEM refers to flow directions using a neighbourhood that appears
as follows:

234
105
876

Neighbouring cells are accessed by looping through the indices 1 through 8
(inclusive) of the dx[] and dy[] arrays.

Convergent and Divergent Metrics

The greatest difference between flow metrics is in whether they are convergent
or divergent. In a convergent method rivers only ever join: they never diverge
or bifurcate. This means that landscape structures such as braided rivers cannot
be adequately represented by a convergent method.

In a divergent method rivers may join and split, so braided rivers can be
represented.

In general, convergent methods are simpler and therefore faster to use. There is
a large diversity of divergent methods.

Note on the examples

Epsilon depression-filling replaces a depression with a predictable, convergent
flow pattern. Beauford watershed has a number of depressions, as is evident in
the example images below. A flow metric should not necessarily be judged by its
behaviour within a filled depression. For convenience, a zoomed view of a non-
depression area is shown and, at the end of this chapter, the views are
compared.

D8 (O’Callaghan and Mark, 1984)

O’Callaghan, J.F., Mark, D.M., 1984. The Extraction of Drainage Networks from Digital Elevation Data. Computer vision, graphics, and image processing 28, 323–344.

The D8 method assigns flow from a focal cell to one and only one of its 8
neighbouring cells. The chosen neighbour is the one accessed via the steepest
slope. When such a neighbour does not exist, no flow direction is assigned. When
two or more neighbours have the same slope, the chosen neighbour is the first
one considered by the algorithm.

This is a convergent, deterministic flow method.

import richdem as rd
import numpy as np

dem = rd.rdarray(np.load('imgs/beauford.npz')['beauford'], no_data=-9999)

rd.FillDepressions(dem, epsilon=True, in_place=True)
accum_d8 = rd.FlowAccumulation(dem, method='D8')
d8_fig = rd.rdShow(accum_d8, zxmin=450, zxmax=550, zymin=550, zymax=450, figsize=(8,5.5), axes=False, cmap='jet')

(Source code, png, hires.png, pdf)

[image: _images/flow_metric_d8-1.png]

	Language

	Command

	C++

	richdem::FM_OCallaghanD8 or richdem::FM_D8()

D4 (O’Callaghan and Mark, 1984)

O’Callaghan, J.F., Mark, D.M., 1984. The Extraction of Drainage Networks from Digital Elevation Data. Computer vision, graphics, and image processing 28, 323–344.

The D4 method assigns flow from a focal cell to one and only one of its 4 north,
south, east, or west neighbouring cells. The chosen neighbour is the one
accessed via the steepest slope. When such a neighbour does not exist, no flow
direction is assigned. When two or more neighbours have the same slope, the
chosen neighbour is the first one considered by the algorithm.

This is a convergent, deterministic flow method.

import richdem as rd
import numpy as np

dem = rd.rdarray(np.load('imgs/beauford.npz')['beauford'], no_data=-9999)

rd.FillDepressions(dem, epsilon=True, in_place=True)
accum_d4 = rd.FlowAccumulation(dem, method='D4')
d8_fig = rd.rdShow(accum_d4, zxmin=450, zxmax=550, zymin=550, zymax=450, figsize=(8,5.5), axes=False, cmap='jet')

(Source code, png, hires.png, pdf)

[image: _images/flow_metric_d4-2.png]

	Language

	Command

	C++

	richdem::FM_OCallaghanD4 or richdem::FM_D4()

Rho8 (Fairfield and Leymarie, 1991)

Fairfield, J., Leymarie, P., 1991. Drainage networks from grid digital elevation models. Water resources research 27, 709–717.

The Rho8 method apportions flow from a focal cell to one and only one of its 8
neighbouring cells. To do so, the slope to each neighbouring cell is calculated
and a neighbouring cell is selected randomly with a probability weighted by the
slope.

This is a convergent, stochastic flow method.

[image: _images/fm_rho8_comp.png]
accum_rho8 = rd.FlowAccumulation(dem, method='Rho8')
rd.rdShow(accum_rho8, zxmin=450, zxmax=550, zymin=550, zymax=450, figsize=(8,5.5), axes=False, cmap='jet', vmin=d8_fig['vmin'], vmax=d8_fig['vmax'])

(Source code, png, hires.png, pdf)

[image: _images/flow_metric_rho8-3.png]

	Language

	Command

	C++

	richdem::FM_Rho8() or richdem::FM_FairfieldLeymarieD8

Rho4 (Fairfield and Leymarie, 1991)

Fairfield, J., Leymarie, P., 1991. Drainage networks from grid digital elevation models. Water resources research 27, 709–717.

The Rho4 method apportions flow from a focal cell to one and only one of its 8
neighbouring cells. To do so, the slope to each neighbouring cell is calculated
and a neighbouring cell is selected randomly with a probability weighted by the
slope.

This is a convergent, stochastic flow method.

[image: _images/fm_rho8_comp.png]
accum_rho4 = rd.FlowAccumulation(dem, method='Rho4')
rd.rdShow(accum_rho4, zxmin=450, zxmax=550, zymin=550, zymax=450, figsize=(8,5.5), axes=False, cmap='jet', vmin=d8_fig['vmin'], vmax=d8_fig['vmax'])

(Source code, png, hires.png, pdf)

[image: _images/flow_metric_rho4-4.png]

	Language

	Command

	C++

	richdem::FM_Rho4() or richdem::FM_FairfieldLeymarieD4

Quinn (1991)

Quinn, P., Beven, K., Chevallier, P., Planchon, O., 1991. The Prediction Of Hillslope Flow Paths For Distributed Hydrological Modelling Using Digital Terrain Models. Hydrological Processes 5, 59–79.

The Quinn (1991) method apportions flow from a focal cell to one or more, and
possibly all, of its 8 neighbouring cells. To do so, the amount of flow
apportioned to each neighbour is a function \(\tan(\beta)^1\) of the slope
\(\beta\) to that neighbour. This is a special case of the Holmgren (1994)
method.

This is a divergent, deterministic flow method.

accum_quinn = rd.FlowAccumulation(dem, method='Quinn')
rd.rdShow(accum_quinn, zxmin=450, zxmax=550, zymin=550, zymax=450, figsize=(8,5.5), axes=False, cmap='jet', vmin=d8_fig['vmin'], vmax=d8_fig['vmax'])

(Source code, png, hires.png, pdf)

[image: _images/flow_metric_quinn1991-5.png]

	Language

	Command

	C++

	richdem::FM_Quinn()

Freeman (1991)

Freeman, T.G., 1991. Calculating catchment area with divergent flow based on a regular grid. Computers & Geosciences 17, 413–422.

The Freeman (1991) method apportions flow from a focal cell to one or more, and
possibly all, of its 8 neighbouring cells. To do so, the amount of flow
apportioned to each neighbour is a function of the slope to that neighbour and a
tuning parameter \(p\). In particular, the fraction \(f_i\) of flow
apportioned to neighbour \(i\) is

\[f_i = \frac{\max(0,\beta_i^p)}{\sum_{j \in N} \max(0,\beta_j^p)}\]

Freeman recommends choosing \(p \approx 1.1\).

This is a divergent, deterministic flow method.

accum_freeman = rd.FlowAccumulation(dem, method='Freeman', exponent=1.1)
rd.rdShow(accum_freeman, zxmin=450, zxmax=550, zymin=550, zymax=450, figsize=(8,5.5), axes=False, cmap='jet', vmin=d8_fig['vmin'], vmax=d8_fig['vmax'])

(Source code, png, hires.png, pdf)

[image: _images/flow_metric_freeman1991-6.png]

	Language

	Command

	C++

	richdem::FM_Freeman()

Holmgren (1994)

Holmgren, P., 1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrological processes 8, 327–334.

The Holmgren (1994) method apportions flow from a focal cell to one or more, and
possibly all, of its 8 neighbouring cells. To do so, the amount of flow
apportioned to each neighbour is a function of the slope that neighbour and a
user-specified exponent \(x\). In particular, the fraction \(f_i\) of
flow apportioned to neighbour \(i\) is

\[f_i = \frac{(\tan \beta_i)^x}{\sum_{j \in N} (tan \beta_j)^x} \forall \tan \beta > 0\]

This is a generalization of the Quinn (1991) method in which the exponent is 1.
As \(x \rightarrow \infty\), this method approximates the D8 method.

Holmgren recommends choosing \(x \in [4,6]\).

This is a divergent, deterministic flow method.

accum_holmgren = rd.FlowAccumulation(dem, method='Holmgren', exponent=5)
rd.rdShow(accum_holmgren, zxmin=450, zxmax=550, zymin=550, zymax=450, figsize=(8,5.5), axes=False, cmap='jet', vmin=d8_fig['vmin'], vmax=d8_fig['vmax'])

(Source code, png, hires.png, pdf)

[image: _images/flow_metric_holmgren1994-7.png]

	Language

	Command

	C++

	richdem::FM_Holmgren()

D∞ (Tarboton, 1997)

Tarboton, D.G., 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water resources research 33, 309–319.

The D∞ method apportions flow from a focal cell between one or two adjacent
neighbours of its 8 neighbouring cells. To do so, a line of steepest descent is
calculated by doing localized surface fitting between the focal cell and
adjacent pairs of its neighbouring cell. This line often falls between two
neighbours.

This is a divergent, deterministic flow method.

[image: _images/fm_dinfinity.png]
[image: _images/fm_dinf_comp.png]
accum_dinf = rd.FlowAccumulation(dem, method='Dinf')
rd.rdShow(accum_dinf, zxmin=450, zxmax=550, zymin=550, zymax=450, figsize=(8,5.5), axes=False, cmap='jet', vmin=d8_fig['vmin'], vmax=d8_fig['vmax'])

(Source code, png, hires.png, pdf)

[image: _images/flow_metric_tarboton1997-8.png]

	Language

	Command

	C++

	richdem::FM_Tarboton() or richdem::FM_Dinfinity()

Side-by-Side Comparisons of Flow Metrics

(Source code, png, hires.png, pdf)

[image: _images/flow_metric_comparison-9.png]

Note that Quinn (1991) and Freeman (1991) produce rather similar results;
nonetheless, they are different:

(Source code, png, hires.png, pdf)

[image: _images/flow_metric_quinn_freeman_compare-10.png]

Accessing Flow Proportions Directly

In higher-level languages the foregoing flow proportions can be access via the
flow proportions command, such as follows:

bprops = rd.FlowProportions(dem=beau, method='D8')

This command returns a matrix with the same width and height as the input, but
an extra dimension which assigns each (x,y) cell 9 single-precision floating-
point values.

The zeroth of these values is used for storing status information about the cell
as a whole. If the 0th value of the area is 0 then the cell produces flow; if
it is -1, then the cell produces no flow; if it is -2, then the cell is a
NoData cell. The following eight values indicate the proportion of the cells
flow directed to the neighbour corresponding to the index of that value where
the neighbours are defined as in Flow Coordinate System.

For instance, the values:

0 0.25 0.25 0.25 0.25 0 0 0 0

direct 25% of a cell’s flow to the northwest, north, northeast, and east.

These values can be manipulated and used to generate custom flow accumulations.

Flow Accumulation

Each cell in a DEM can be modeled as generating a certain amount of flow. This
flow is apportioned to downstream cells according to a chosen flow metric. The flow accumulation matrix, then, is one in which every
cell’s value is the summation of the flow it generates and all the flow which
ultimately passes through it from upstream.

Flow Metrics shows the results of running a variety of flow metrics where
each cell is modeled as producing 1 flow unit. This is shown again below for the
D8 metric:

import richdem as rd
import numpy as np

dem = rd.rdarray(np.load('imgs/beauford.npz')['beauford'], no_data=-9999)

#Fill depressions with epsilon gradient to ensure drainage
rd.FillDepressions(dem, epsilon=True, in_place=True)

#Get flow accumulation with no explicit weighting. The default will be 1.
accum_d8 = rd.FlowAccumulation(dem, method='D8')
d8_fig = rd.rdShow(accum_d8, zxmin=450, zxmax=550, zymin=550, zymax=450, figsize=(8,5.5), axes=False, cmap='jet')

(Source code, png, hires.png, pdf)

[image: _images/flow_accum_one-1.png]

But the amount of flow produced per cell can also be varied. For example, the
amount of flow generated could be uniform random:

#Generate a random flow field
accum = np.random.random(size=dem.shape)

#Modify the flow field into a flow accumulation field in place. A view of
#the modified data is returned as a metadata-enriched rdarray.
accum = rd.FlowAccumulation(dem, method='D8', weights=accum, in_place=True)

d8_fig = rd.rdShow(accum, zxmin=450, zxmax=550, zymin=550, zymax=450, figsize=(8,5.5), axes=False, cmap='jet')

(Source code, png, hires.png, pdf)

[image: _images/flow_accum_random_weights-2.png]

Or flow generation could be concentrated to an area, as if there were a
localized rain event:

#Make a circular region of flow generation

#Create coordinate grids
yy, xx = np.mgrid[:dem.shape[0], :dem.shape[1]]
#Find squared distance from center of grid
circle = (xx - dem.shape[1]/2) ** 2 + (yy - dem.shape[0]/2) ** 2
#Take only those cells within a radius
circle = (circle < 200**2).astype('float64')

#Don't modify the original accumulation data. Return a new matrix with flow
#accumulation values.
accum = rd.FlowAccumulation(dem, method='D8', weights=circle, in_place=False)

d8_fig = rd.rdShow(accum, ignore_colours=[0], figsize=(8,5.5), axes=False, cmap='jet')

(Source code, png, hires.png, pdf)

[image: _images/flow_accum_circle_weights-3.png]

Or flow generation could be concentrated to part of a region, as though a
mountain range were affecting weather:

#Create coordinate grids
yy, xx = np.mgrid[:dem.shape[0], :dem.shape[1]]

#Create nominal weights
accum = rd.rdarray(np.ones(shape=dem.shape).astype('float64'), no_data=-1)

#Increase weights on right-hand side of field
accum[xx>dem.shape[1]/2] *= 50

#Don't modify the original accumulation data. Return a new matrix with flow
#accumulation values.
rd.FlowAccumulation(dem, method='D8', weights=accum, in_place=True)

d8_fig = rd.rdShow(accum, zxmin=450, zxmax=550, zymin=550, zymax=450, figsize=(8,5.5), axes=False, cmap='jet')

(Source code, png, hires.png, pdf)

[image: _images/flow_accum_location_weights-4.png]

From Flow Proportions

Flow accumulation can also be generated from raw flow proportions:

props = rd.FlowProportions(dem, method='Freeman', exponent=1.1)

#30% of the flow moving along any route is absorbed
props[props>0] *= 0.7
accum = rd.FlowAccumFromProps(props=props)

rd.rdShow(accum, ignore_colours=[0], figsize=(8,5.5), axes=False, cmap='jet', zxmin=450, zxmax=550, zymin=550, zymax=450)

(Source code, png, hires.png, pdf)

[image: _images/flow_accum_from_props-5.png]

Terrain Attributes

RichDEM can calculate a number of terrain attributes.

Slope

Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE 69, 14–47. doi:10.1109/PROC.1981.11918

Horn (1981) calculates the slope of a focal cell by using a central difference
estimation of a surface fitted to the focal cell and its neighbours. The slope
chosen is the maximum of this surface and can be returned in several formats.

import richdem as rd
import numpy as np

beau = rd.rdarray(np.load('imgs/beauford.npz')['beauford'], no_data=-9999)
slope = rd.TerrainAttribute(beau, attrib='slope_riserun')
rd.rdShow(slope, axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/terrain_slope-1.png]

	Language

	Command

	Python

	richdem.TerrainAttribute

	C++

	richdem::TA_slope_riserun()

	C++

	richdem::TA_slope_percentage()

	C++

	richdem::TA_slope_degrees()

	C++

	richdem::TA_slope_radians()

Aspect

Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE 69, 14–47. doi:10.1109/PROC.1981.11918

Horn (1981) calculates aspect as the direction of the maximum slope of the focal
cell. The value returned is in Degrees.

aspect = rd.TerrainAttribute(beau, attrib='aspect')
rd.rdShow(aspect, axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/terrain_aspect-2.png]

	Language

	Command

	Python

	richdem.TerrainAttribute

	C++

	richdem::TA_aspect()

Profile Curvature

Zevenbergen, L.W., Thorne, C.R., 1987. Quantitative analysis of land surface topography. Earth surface processes and landforms 12, 47–56.

Profile curvature is calculated by fitting a surface to the focal cell and its
neighbours. The profile curvature runs parallel to the maximum slope of this
surface and affects the acceleration and deceleration of flow down the slope.

Negative profile curvatures (A) indicate upwardly convex slopes, positive
profile curvatures (B) indicate upwardly concave surfaces, and a profile
curvature of zero indicates a linear slope (C).

[image: Image drawn from ArcGIS documentation.]
profile_curvature = rd.TerrainAttribute(beau, attrib='profile_curvature')
rd.rdShow(profile_curvature, axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/terrain_profile_curvature-3.png]

	Language

	Command

	Python

	richdem.TerrainAttribute

	C++

	richdem::TA_profile_curvature()

Planform Curvature

Zevenbergen, L.W., Thorne, C.R., 1987. Quantitative analysis of land surface topography. Earth surface processes and landforms 12, 47–56.

Planform curvature is calculated by fitting a surface to the focal cell and its
neighbours. The planform curvature runs perpendicular to the maximum slope of
this surface and affects the convergence and divergence of flow down the slope.

Negative planform curvatures (A) indicate laterally convex slopes, positive
planform curvatures (B) indicate laterally concave surfaces, and a planform
curvature of zero indicates a linear slope (C).

[image: Image drawn from ArcGIS documentation.]
planform_curvature = rd.TerrainAttribute(beau, attrib='planform_curvature')
rd.rdShow(planform_curvature, axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/terrain_planform_curvature-4.png]

	Language

	Command

	Python

	richdem.TerrainAttribute

	C++

	richdem::TA_planform_curvature()

Curvature

Zevenbergen, L.W., Thorne, C.R., 1987. Quantitative analysis of land surface topography. Earth surface processes and landforms 12, 47–56.

Curvature is calculated by fitting a surface to the focal cell and its
neighbours. It combines profile and planform curvature.

[image: Image drawn from ArcGIS documentation.]
curvature = rd.TerrainAttribute(beau, attrib='curvature')
rd.rdShow(curvature, axes=False, cmap='jet', figsize=(8,5.5))

(Source code, png, hires.png, pdf)

[image: _images/terrain_curvature-5.png]

	Language

	Command

	Python

	richdem.TerrainAttribute

	C++

	richdem::TA_curvature()

Python Examples

Depression-filling a DEM and saving it

import richdem as rd

#Load DEM
dem = rd.LoadGDAL("mydem.tif")

#Fill depressions in the DEM. The data is modified in-place to avoid making
#an unnecessary copy. This saves both time and RAM. Note that the function
#has no return value when `in_place=True`.
rd.FillDepressions(dem, epsilon=False, in_place=True)

#Save the DEM
rd.SaveGDAL("mydem_filled.tif", dem)

Comparing filled vs. unfilled DEMs

import richdem as rd

#Load DEM
dem = rd.LoadGDAL("mydem.tif")

#Copy the DEM so we can compare the altered DEM to the unaltered original
demorig = dem.copy()

#Fill depressions in the DEM. The data is modified in place, but, since we
#made a copy above neither time nor memory is really saved.
rd.FillDepressions(dem, epsilon=False, in_place=True)

#Get the difference of the filled and unfilled DEM
diff = dem - demorig

#Display the difference. Do not plot values where there was no difference.
rd.rdShow(diff, ignore_colours=[0])

The foregoing could be written more succinctly by using in_place=False:

import richdem as rd

#Load DEM
demorig = rd.LoadGDAL("mydem.tif")

#Fill depressions in the DEM. By using `in_place=False`, a copy of the DEM
#is made and only this copy is altered. Note that the function now has a
#return value.
dem = rd.FillDepressions(dem, epsilon=False, in_place=False)

The rdarray class

RichDEM has a class rdarray which can wrap around NumPy arrays without copying
the memory therein. This makes it easy to pass data to RichDEM in a format it
understands.

The rdarray class works exactly like a NumPy array, but has some special
features.

Namely, an rdarray has the following properties:

	metadata

	A dictionary containing metadata in key-value pairs.

	projection

	A string describing the geographic projection of the dataset

	geotransform

	An array of six floating-point values representing the size and offset of the DEM’s cells.

	no_data

	A value indicating which cell values should be treated as special NoData cells. (See Concepts, TODO)

The metadata dictionary contains the special entry
metadata['PROCESSING_HISTORY']. This entry contains a complete list of
everything that RichDEM has done to a dataset. (See Concepts, TODO)

Using RichDEM without GDAL

GDAL is an optional dependency to RichDEM. In modeling, data is often stored in
NumPy arrays and evolved or manipulated without ever being loaded from or saved
to disk. To use NumPy arrays, simply wrap them with an rdarray as shown below.
Details about the rdarray are above.

Since an rdarray must have a no_data value and choosing the no_data value
incorrectly can produce erroneous results, RichDEM does not automagically
convert NumPy arrays. It must be done manually.

import richdem as rd
import numpy as np

#Create some NumPy data
npa = np.random.random(size=(100,100))

#Wrap the NumPy data in an rdarray. I want to treat all of the cells as data
#cells, so I use `no_data=-9999` since I know none of my cells will have
#this value.
rda = rd.rdarray(npa, no_data=-9999)

#Fill depressions, modifying in place. At this point, the calculation I
#wanted to do is done and I can throw away the `rda` object.
rd.FillDepressions(rda, in_place=True)

RichDEM C++ Reference

	
template <class T>

	
class A2Array2D

	
Public Functions

	
A2Array2D(std::string layoutfile, int cachesize)

	

	
A2Array2D(std::string prefix, int per_tile_width, int per_tile_height, int width, int height, int cachesize)

	

	
template <class U>

	
A2Array2D(std::string filename_template, const A2Array2D<U> &other, int cachesize)

	

	
T &operator()(int32_t tx, int32_t ty, int32_t x, int32_t y)

	

	
T &operator()(int32_t x, int32_t y)

	

	
void makeQuadIndex(int32_t x, int32_t y, int32_t &tx, int32_t &ty, int32_t &px, int32_t &py) const

	

	
int32_t width() const

	

	
int32_t height() const

	

	
int32_t widthInTiles() const

	

	
int32_t heightInTiles() const

	

	
int32_t notNullTiles() const

	

	
int32_t tileWidth(int32_t tx, int32_t ty) const

	

	
int32_t tileHeight(int32_t tx, int32_t ty) const

	

	
int32_t stdTileHeight() const

	

	
int32_t stdTileWidth() const

	

	
void setAll(const T &val)

	

	
bool isNoData(int32_t x, int32_t y)

	

	
bool isNoData(int32_t tx, int32_t ty, int32_t px, int32_t py)

	

	
bool isReadonly() const

	

	
GDALDataType myGDALType() const

	Returns the GDAL data type of the A2Array2D template type.

	
void saveGDAL(std::string outputname_template)

	

	
void saveUnifiedGDAL(const std::string outputname)

	

	
void setNoData(const T &ndval)

	

	
int32_t getEvictions() const

	

	
bool isNullTile(int32_t tx, int32_t ty) const

	

	
bool isEdgeCell(int32_t x, int32_t y) const

	

	
bool in_grid(int32_t x, int32_t y) const

	

	
bool isInteriorCell(int32_t x, int32_t y) const

	

	
void printStamp(int size)

	

	
void loadTile(int tx, int ty)

	

Public Members

	
bool flipH = false

	

	
bool flipV = false

	

Private Functions

	
void _LoadTile(int tile_x, int tile_y)

	

Private Members

	
std::vector<bool> null_tile_quick

	

	
int quick_width_in_tiles

	

	
int quick_height_in_tiles

	

	
std::vector<std::vector<WrappedArray2D>> data

	

	
LRU<WrappedArray2D *> lru

	

	
int32_t not_null_tiles = 0

	

	
int64_t total_width_in_cells = 0

	

	
int64_t total_height_in_cells = 0

	

	
int32_t per_tile_width = 0

	

	
int32_t per_tile_height = 0

	

	
int32_t evictions = 0

	

	
int64_t cells_in_not_null_tiles = 0

	

	
T no_data_to_set

	

	
bool readonly = true

	

Friends

	
friend richdem::A2Array2D::A2Array2D

	

	
template <class T>

	
class Array2D

	#include <Array2D.hpp>Class to hold and manipulate GDAL and native rasters.

Array2D manages a two-dimensional raster dataset. Passed a request to load such data, it peeks at the file header and can either load data on construction or wait until a later point. It can also offload data to disk.
	Author

	Richard Barnes (rbarnes@umn.edu)

Array2D permits simple copy construction as well as templated copies, which transfer projections and geotransforms, but not the actual data. This is useful for say, create a flow directions raster which is homologous to a DEM.

Array2D implements two addressing schemes: “xy” and “i”. All methods are available in each scheme; users may use whichever is convenient. The xy-scheme accesses raster cells by their xy-coordinates. The i-scheme accesses cells by their address in a flat array. Internally, xy-addresses are converted to i-addresses. i-addressing is frequently faster because it reduces the space needed to store coordinates and requires no addressing mathematics; however, xy-addressing may be more intuitive. It is suggested to develop algorithms using xy-addressing and then convert them to i-addressing if additional speed is desired. The results of the two versions can then be compared against each other to verify that using i-addressing has not introduced any errors.

Unnamed Group

	
xy_t view_xoff = 0

	A rectangular subregion of a larger raster can be extracted. These variables store the offsets of this subregion in case the subregion needs to be saved into a raster with other subregions

	
xy_t view_yoff = 0

	

Public Types

	
typedef int32_t xy_t

	xy-addressing data type

	
typedef uint32_t i_t

	i-addressing data type

Public Functions

	
Array2D()

	

	
Array2D(xy_t width, xy_t height, const T &val = T())

	Creates a raster of the specified dimensions.

	Parameters

	
	width: Width of the raster

	height: Height of the raster

	val: Initial value of all the raster’s cells. Defaults to the Array2D template type’s default value

	
Array2D(T *data0, const xy_t width, const xy_t height)

	Wraps a flat array in an Array2D object.

Wraps a flat array in an Array2D object. The Array2D does not take ownership of the data.

	Parameters

	
	data0: Pointer to data to wrap

	width: Width of the data

	height: Height of the data

	
template <class U>

	
Array2D(const Array2D<U> &other, const T &val = T())

	Create a raster with the same properties and dimensions as another raster. No data is copied between the two.

	Parameters

	
	other: Raster whose properties and dimensions should be copied

	val: Initial value of all the raster’s cells.

	
template <class U>

	
Array2D(const Array3D<U> &other, const T &val = T())

	Create a raster with the same properties and dimensions as another raster. No data is copied between the two.

	Parameters

	
	other: Raster whose properties and dimensions should be copied

	val: Initial value of all the raster’s cells.

	
Array2D(const std::string &filename)

	

	
Array2D(const std::string &filename, bool native, xy_t xOffset = 0, xy_t yOffset = 0, xy_t part_width = 0, xy_t part_height = 0, bool exact = false, bool load_data = true)

	TODO.

	
void setCacheFilename(const std::string &filename)

	

	
void dumpData()

	Caches the raster data and all its properties to disk. Data is then purged from RAM.

	Post

	Calls to loadData() after this will result in data being loaded from the cache.

	
void loadData()

	Loads data from disk into RAM.

If dumpData() has been previously called, data is loaded from the cache; otherwise, it is loaded from a GDAL file. No data is loaded if data is already present in RAM.

	
T *getData()

	Returns a pointer to the internal data array.

	
i_t size() const

	Number of cells in the DEM.

	
xy_t width() const

	Width of the raster.

	
xy_t height() const

	Height of the raster.

	
xy_t viewXoff() const

	X-Offset of this subregion of whatever raster we loaded from.

	
xy_t viewYoff() const

	Y-Offset of this subregion of whatever raster we loaded from.

	
bool empty() const

	Returns TRUE if no data is present in RAM.

	
T noData() const

	Returns the NoData value of the raster. Cells equal to this value sould generally not be used in calculations. But note that the isNoData() method is a much better choice for testing whether a cell is NoData or not.

	
T min() const

	Finds the minimum value of the raster, ignoring NoData cells.

	
T max() const

	Finds the maximum value of the raster, ignoring NoData cells.

	
void replace(const T oldval, const T newval)

	Replace one cell value with another throughout the raster. Can operate on NoData cells.

	Parameters

	
	oldval: Value to be replaced

	newval: Value to replace ‘oldval’ with

	
i_t countval(const T val) const

	Counts the number of occurrences of a particular value in the raster. Can operate on NoData cells.

	Return

	The number of times ‘val’ appears in the raster. Will be 0 if raster is not loaded in RAM.

	Parameters

	
	val: Value to be be counted

	
i_t i0() const

	

	
void iToxy(const i_t i, xy_t &x, xy_t &y) const

	Convert from index coordinates to x,y coordinates.

	Parameters

	
	i: Index coordinate

	x: X-coordinate of i

	y: Y-coordinate of i

	
i_t xyToI(xy_t x, xy_t y) const

	Convert from x,y coordinates to index coordinates.

	Return

	Returns the index coordinate i of (x,y)

	Parameters

	
	x: X-coordinate to convert

	y: Y-coordinate to convert

	
i_t nToI(i_t i, xy_t dx, xy_t dy) const

	Given a cell identified by an i-coordinate, return the i-coordinate of the neighbour identified by dx,dy.

	Return

	i-coordinate of the neighbour. Usually referred to as ‘ni’

	Parameters

	
	i: i-coordinate of cell whose neighbour needs to be identified

	dx: x-displacement of the neighbour from i

	dy: y-displacement of the neighbour from i

	
i_t getN(i_t i, uint8_t n) const

	Given a cell identified by an i-coordinate, return the i-coordinate of the neighbour identified by n.

	Return

	i-coordinate of the neighbour. Usually referred to as ‘ni’

	Parameters

	
	i: i-coordinate of cell whose neighbour needs to be identified

	n: Neighbour to be identified

	
int nshift(const uint8_t n) const

	Return the offset of the neighbour cell identified by n.

	Return

	Offset of the neighbour n

	Parameters

	
	n: Neighbour for which offset should be retrieved

	
bool operator==(const Array2D<T> &o) const

	Determine if two rasters are equivalent based on dimensions, NoData value, and their data.

	
bool isNoData(xy_t x, xy_t y) const

	Whether or not a cell is NoData using x,y coordinates.

	Return

	Returns TRUE if the cell is NoData

	Parameters

	
	x: X-coordinate of cell to test

	y: Y-coordinate of cell to test

	
bool isNoData(i_t i) const

	Whether or not a cell is NoData using i coordinates.

	Return

	Returns TRUE if the cell is NoData

	Parameters

	
	i: i-coordinate of cell to test

	
void flipVert()

	Flips the raster from top to bottom.

	
void flipHorz()

	Flips the raster from side-to-side.

	
void transpose()

	Flips the raster about its diagonal axis, like a matrix tranpose.

	
bool inGrid(xy_t x, xy_t y) const

	Test whether a cell lies within the boundaries of the raster.

	Return

	TRUE if cell lies within the raster

	Parameters

	
	x: X-coordinate of cell to test

	y: Y-coordinate of cell to test

	
bool isEdgeCell(xy_t x, xy_t y) const

	Test whether a cell lies on the boundary of the raster.

	Return

	TRUE if cell lies on the raster’s boundary

	Parameters

	
	x: X-coordinate of cell to test

	y: X-coordinate of cell to test

	
bool isTopLeft(xy_t x, xy_t y) const

	Determines whether an (x,y) pair is the top left of the DEM.

	Return

	True, if the (x,y) pair is the top left of the DEM; otherwise, false

	
bool isTopRight(xy_t x, xy_t y) const

	Determines whether an (x,y) pair is the top right of the DEM.

	Return

	True, if the (x,y) pair is the top right of the DEM; otherwise, false

	
bool isBottomLeft(xy_t x, xy_t y) const

	Determines whether an (x,y) pair is the bottom left of the DEM.

	Return

	True, if the (x,y) pair is the bottom left of the DEM; otherwise, false

	
bool isBottomRight(xy_t x, xy_t y) const

	Determines whether an (x,y) pair is the bottom right of the DEM.

	Return

	True, if the (x,y) pair is the bottom right of the DEM; otherwise, false

	
bool isTopRow(xy_t x, xy_t y) const

	Determines whether an (x,y) pair is in the top row of the DEM.

	Return

	True, if the (x,y) pair is in the top row of the DEM; otherwise, false

	
bool isBottomRow(xy_t x, xy_t y) const

	Determines whether an (x,y) pair is in the bottom row of the DEM.

	Return

	True, if the (x,y) pair is in the bottom row of the DEM; otherwise, false

	
bool isLeftCol(xy_t x, xy_t y) const

	Determines whether an (x,y) pair is in the left column of the DEM.

	Return

	True, if the (x,y) pair is in the left column of the DEM; otherwise, false

	
bool isRightCol(xy_t x, xy_t y) const

	Determines whether an (x,y) pair is in the right column of the DEM.

	Return

	True, if the (x,y) pair is in the right column of the DEM; otherwise, false

	
bool isEdgeCell(i_t i) const

	Test whether a cell lies on the boundary of the raster.

	Return

	TRUE if cell lies on the raster’s boundary

	Parameters

	
	i: i-coordinate of cell to test

	
void setNoData(const T &ndval)

	Sets the NoData value of the raster.

	Parameters

	
	ndval: Value to change NoData to

	
void setAll(const T val)

	Sets all of the raster’s cells to ‘val’.

	Parameters

	
	val: Value to change the cells to

	
void resize(const xy_t width0, const xy_t height0, const T &val0 = T())

	Resize the raster. Note: this clears all the raster’s data.

	Parameters

	
	width0: New width of the raster

	height0: New height of the raster

	val0: Value to set all the cells to. Defaults to the raster’s template type default value

	
template <class U>

	
void resize(const Array2D<U> &other, const T &val = T())

	

	
void expand(xy_t new_width, xy_t new_height, const T val)

	Makes a raster larger and retains the raster’s old data, similar to resize.

Note: Using this command requires RAM equal to the sum of the old raster and the new raster. The old raster is placed in the upper-left of the new raster.

	Parameters

	
	new_width: New width of the raster. Must be >= the old width.

	new_height: New height of the raster. Must be >= the old height.

	val: Value to set the new cells to

	
void countDataCells() const

	Counts the number of cells which are not NoData.

	
i_t numDataCells() const

	Returns the number of cells which are not NoData. May count them.

	Return

	Returns the number of cells which are not NoData.

	
T &operator()(i_t i)

	Return cell value based on i-coordinate.

	Return

	The value of the cell identified by ‘i’

	Parameters

	
	i: i-coordinate of cell whose data should be fetched.

	
T operator()(i_t i) const

	Return cell value based on i-coordinate.

	Return

	The value of the cell identified by ‘i’

	Parameters

	
	i: i-coordinate of cell whose data should be fetched.

	
T &operator()(xy_t x, xy_t y)

	Return cell value based on x,y coordinates.

	Return

	The value of the cell identified by x,y

	Parameters

	
	x: X-coordinate of cell whose data should be fetched.

	y: Y-coordinate of cell whose data should be fetched.

	
T operator()(xy_t x, xy_t y) const

	Return cell value based on x,y coordinates.

	Return

	The value of the cell identified by x,y

	Parameters

	
	x: X-coordinate of cell whose data should be fetched.

	y: Y-coordinate of cell whose data should be fetched.

	
std::vector<T> topRow() const

	Returns a copy of the top row of the raster.

	Return

	A vector containing a copy of the top row of the raster

	
std::vector<T> bottomRow() const

	Returns a copy of the bottom row of the raster.

	Return

	A vector containing a copy of the bottom row of the raster

	
std::vector<T> leftColumn() const

	Returns a copy of the left column of the raster.

Top to bottom is reoriented as left to right.

	Return

	A vector containing a copy of the left column of the raster

	
std::vector<T> rightColumn() const

	Returns a copy of the right column of the raster.

Top to bottom is reoriented as left to right.

	Return

	A vector containing a copy of the right column of the raster

	
void setRow(xy_t y, const T &val)

	Sets an entire row of a raster to a given value.

	Parameters

	
	y: The row to be set

	val: The value to set the row to

	
void setCol(xy_t x, const T &val)

	Sets an entire column of a raster to a given value.

	Parameters

	
	x: The column to be set

	val: The value to set the column to

	
std::vector<T> getRowData(xy_t y) const

	Returns a copy of an arbitrary row of the raster.

	Return

	A vector containing a copy of the selected row

	Parameters

	
	y: The row to retrieve

	
std::vector<T> getColData(xy_t x) const

	Returns a copy of an arbitrary column of the raster.

	Return

	A vector containing a copy of the selected column

	Parameters

	
	x: The column to retrieve

	
void clear()

	Clears all raster data from RAM.

	
template <class U>

	
void templateCopy(const Array2D<U> &other)

	Copies the geotransform, projection, and basename of another raster.

	Parameters

	
	other: Raster to copy from

	
void printStamp(int size, std::string msg = "") const

	Output a square of cells useful for determining raster orientation.

This method prints out a square block of cells whose upper-left corner is the (integer-division) center of the raster.

Stamps are only shown if the SHOW_STAMPS preprocessor variable is set.

Since algorithms may have to flip rasters horizontally or vertically before manipulating them, it is important that all algorithms work on data in the same orientation. This method, used in testing, helps a user ensure that their algorithm is orientating data correctly.

	Parameters

	
	size: Output stamp will be size x size

	msg: Message to print prior to the stamp

	
void printBlock(const int radius, const xy_t x0, const xy_t y0, bool color = false, const std::string msg = "") const

	Prints a square of cells centered at x,y. Useful for debugging.

	Parameters

	
	radius: Output stamp will be 2*radius x 2*radius

	x0: X-coordinate of block center

	y0: Y-coordinate of block center

	color: Print the (x,y) cell in colour?

	msg: Optional message to print above the block

	
void printAll(const std::string msg = "") const

	Prints the entire array.

	Parameters

	
	msg: Optional message to print above the block

	
double getCellArea() const

	Get the area of an individual cell in square projection units.

	Return

	The area of the cell in square projection units

	
double getCellLengthX() const

	Get the length of a cell along the raster’s horizontal axis.

	Return

	The length of the cell along the raster’s horizontal axis

	
double getCellLengthY() const

	Get the length of a cell along the raster’s horizontal axis.

	Return

	The length of the cell along the raster’s horizontal axis

	
void scale(const double x)

	Multiplies the entire array by a scalar.

	Parameters

	
	x: Value to multiply array by

	
bool owned() const

	

Public Members

	
std::string filename

	File, if any, from which the data was loaded.

	
std::string basename

	Filename without path or extension.

	
std::vector<double> geotransform

	Geotransform of the raster.

	
std::string projection

	Projection of the raster.

	
std::map<std::string, std::string> metadata

	Raster’s metadata in key-value pairs.

Public Static Attributes

	
const i_t NO_I = std::numeric_limits<i_t>::max()

	

Private Functions

	
void saveToCache(const std::string &filename)

	Saves raster to a simply-structure file on disk, possibly using compression.

	Post

	Using loadData() after running this function will result in data being loaded from the cache, rather than the original file (if any).

	
void loadNative(const std::string &filename, bool load_data = true)

	TODO.

Private Members

	
std::array<int, 9> _nshift

	Offset to neighbouring cells;.

	
ManagedVector<T> data

	Holds the raster data in a 1D array this improves caching versus a 2D array

	
T no_data

	NoData value of the raster.

	
i_t num_data_cells = NO_I

	Number of cells which are not NoData.

	
xy_t view_width = 0

	Height of raster in cells.

	
xy_t view_height = 0

	Width of raster in cells.

	
bool from_cache

	If TRUE, loadData() loads data from the cache assuming the Native format. Otherwise, it assumes it is loading from a GDAL file.

Friends

	
friend richdem::Array2D::Array2D

	

	
friend richdem::Array2D::Array3D

	

	
template <class T>

	
class Array3D

	#include <Array3D.hpp>Class to hold and 2D rasters with neighbour information.

Array3D manages a two-dimensional raster dataset with information about neighbours.
	Author

	Richard Barnes (rbarnes@umn.edu)

Array3D implements two addressing schemes: “xyn” and “i”. All methods are available in each scheme; users may use whichever is convenient. The xyn- scheme accesses raster cells by their xyn-coordinates. The i-scheme accesses cells by their address in a flat array. Internally, xyn-addresses are converted to i-addresses. i-addressing is frequently faster because it reduces the space needed to store coordinates and requires no addressing mathematics; however, xyn-addressing may be more intuitive. It is suggested to develop algorithms using xyn-addressing and then convert them to i-addressing if additional speed is desired. The results of the two versions can then be compared against each other to verify that using i-addressing has not introduced any errors.

Unnamed Group

	
xy_t view_xoff = 0

	A rectangular subregion of a larger raster can be extracted. These variables store the offsets of this subregion in case the subregion needs to be saved into a raster with other subregions

	
xy_t view_yoff = 0

	

Public Types

	
typedef int32_t xy_t

	xy-addressing data type

	
typedef std::size_t i_t

	i-addressing data type

	
typedef uint8_t n_t

	neighbour addressing data type

Public Functions

	
Array3D()

	

	
Array3D(xy_t width, xy_t height, const T &val = T())

	Creates a raster of the specified dimensions.

	Parameters

	
	width: Width of the raster

	height: Height of the raster

	val: Initial value of all the raster’s cells. Defaults to the Array3D template type’s default value

	
Array3D(T *data0, const xy_t width, const xy_t height)

	Wraps a flat array in an Array3D object.

Wraps a flat array in an Array3D object. The Array3D does not take ownership of the data.

	Parameters

	
	data0: Pointer to data to wrap

	width: Width of the data

	height: Height of the data

	
template <class U>

	
Array3D(const Array3D<U> &other, const T &val = T())

	Create a raster with the same properties and dimensions as another raster. No data is copied between the two.

	Parameters

	
	other: Raster whose properties and dimensions should be copied

	val: Initial value of all the raster’s cells.

	
template <class U>

	
Array3D(const Array2D<U> &other, const T &val = T())

	Create a raster with the same properties and dimensions as another raster. No data is copied between the two.

	Parameters

	
	other: Raster whose properties and dimensions should be copied

	val: Initial value of all the raster’s cells.

	
T *getData()

	Returns a pointer to the internal data array.

	
i_t size() const

	Number of cells in the DEM.

	
xy_t width() const

	Width of the raster.

	
xy_t height() const

	Height of the raster.

	
xy_t viewXoff() const

	X-Offset of this subregion of whatever raster we loaded from.

	
xy_t viewYoff() const

	Y-Offset of this subregion of whatever raster we loaded from.

	
bool empty() const

	Returns TRUE if no data is present in RAM.

	
T noData() const

	Returns the NoData value of the raster. Cells equal to this value sould generally not be used in calculations. But note that the isNoData() method is a much better choice for testing whether a cell is NoData or not.

	
i_t i0() const

	

	
i_t xyToI(xy_t x, xy_t y, n_t n) const

	Convert from x,y coordinates to index coordinates.

	Return

	Returns the index coordinate i of (x,y)

	Parameters

	
	x: X-coordinate to convert

	y: Y-coordinate to convert

	
bool operator==(const Array3D<T> &o) const

	Determine if two rasters are equivalent based on dimensions, NoData value, and their data.

	
bool isNoData(xy_t x, xy_t y) const

	Whether or not a cell is NoData using x,y coordinates.

	Return

	Returns TRUE if the cell is NoData

	Parameters

	
	x: X-coordinate of cell to test

	y: Y-coordinate of cell to test

	
bool isNoData(i_t i) const

	Whether or not a cell is NoData using i coordinates.

	Return

	Returns TRUE if the cell is NoData

	Parameters

	
	i: i-coordinate of cell to test

	
bool inGrid(xy_t x, xy_t y) const

	Test whether a cell lies within the boundaries of the raster.

	Return

	TRUE if cell lies within the raster

	Parameters

	
	x: X-coordinate of cell to test

	y: Y-coordinate of cell to test

	
void setNoData(const T &ndval)

	Sets the NoData value of the raster.

	Parameters

	
	ndval: Value to change NoData to

	
void setAll(const T val)

	Sets all of the raster’s cells to ‘val’.

	Parameters

	
	val: Value to change the cells to

	
void resize(const xy_t width0, const xy_t height0, const T &val0 = T())

	Resize the raster. Note: this clears all the raster’s data.

	Parameters

	
	width0: New width of the raster

	height0: New height of the raster

	val0: Value to set all the cells to. Defaults to the raster’s template type default value

	
template <class U>

	
void resize(const Array3D<U> &other, const T &val = T())

	

	
void countDataCells() const

	Counts the number of cells which are not NoData.

	
i_t numDataCells() const

	Returns the number of cells which are not NoData. May count them.

	Return

	Returns the number of cells which are not NoData.

	
T &operator()(xy_t x, xy_t y, n_t n)

	Return cell value based on x,y coordinates.

	Return

	The value of the cell identified by x,y

	Parameters

	
	x: X-coordinate of cell whose data should be fetched.

	y: Y-coordinate of cell whose data should be fetched.

	
T operator()(xy_t x, xy_t y, n_t n) const

	Return cell value based on x,y coordinates.

	Return

	The value of the cell identified by x,y

	Parameters

	
	x: X-coordinate of cell whose data should be fetched.

	y: Y-coordinate of cell whose data should be fetched.

	
T getIN(i_t i, n_t n) const

	

	
T &getIN(i_t i, n_t n)

	

	
void clear()

	Clears all raster data from RAM.

	
bool owned() const

	

Public Members

	
std::string filename

	File, if any, from which the data was loaded.

	
std::string basename

	Filename without path or extension.

	
std::vector<double> geotransform

	Geotransform of the raster.

	
std::string projection

	Projection of the raster.

	
std::map<std::string, std::string> metadata

	Raster’s metadata in key-value pairs.

Public Static Attributes

	
const i_t NO_I = std::numeric_limits<i_t>::max()

	

Private Members

	
ManagedVector<T> data

	Holds the raster data in a 1D array this improves caching versus a 2D array

	
T no_data

	NoData value of the raster.

	
i_t num_data_cells = NO_I

	Number of cells which are not NoData.

	
xy_t view_width = 0

	Height of raster in cells.

	
xy_t view_height = 0

	Width of raster in cells.

Friends

	
friend richdem::Array3D::Array2D

	

	
friend richdem::Array3D::Array3D

	

	
class GridCell

	#include <grid_cell.hpp>Stores the (x,y) coordinates of a grid cell.

Subclassed by richdem::GridCellZ< elev_t >, richdem::GridCellZ< double >, richdem::GridCellZ< float >

Public Functions

	
GridCell()

	Initiate the grid cell without coordinates; should generally be avoided.

	
GridCell(int x, int y)

	Initiate the grid cell to the coordinates (x0,y0)

Public Members

	
int x

	Grid cell’s x-coordinate.

	
int y

	Grid cell’s y-coordinate

	
template <class elev_t>

	
class GridCellZ

	#include <grid_cell.hpp>Stores the (x,y,z) coordinates of a grid cell; useful for priority sorting with GridCellZ_pq.

Inherits from richdem::GridCell

Subclassed by richdem::GridCellZk< elev_t >

Public Functions

	
GridCellZ(int x, int y, elev_t z)

	

	
GridCellZ()

	

	
bool isnan() const

	

	
bool operator>(const GridCellZ<elev_t> &a) const

	

Public Members

	
elev_t z

	Grid cell’s z-coordinate.

	
template <>

	
template<>
class GridCellZ<double>

	#include <grid_cell.hpp>An (x,y,z) cell with NaNs taken as infinitely small numbers.

Inherits from richdem::GridCell

Public Functions

	
GridCellZ(int x, int y, double z)

	

	
GridCellZ()

	

	
bool isnan() const

	

	
bool operator<(const GridCellZ<double> &a) const

	

	
bool operator>(const GridCellZ<double> &a) const

	

	
bool operator>=(const GridCellZ<double> &a) const

	

	
bool operator<=(const GridCellZ<double> &a) const

	

	
bool operator==(const GridCellZ<double> &a) const

	

	
bool operator!=(const GridCellZ<double> &a) const

	

Public Members

	
double z

	Grid cell’s z-coordinate.

	
template <>

	
template<>
class GridCellZ<float>

	#include <grid_cell.hpp>An (x,y,z) cell with NaNs taken as infinitely small numbers.

Inherits from richdem::GridCell

Public Functions

	
GridCellZ(int x, int y, float z)

	

	
GridCellZ()

	

	
bool isnan() const

	Compare cells based on elevation. (TODO: Distribute)

	
bool operator<(const GridCellZ<float> &a) const

	

	
bool operator>(const GridCellZ<float> &a) const

	

	
bool operator>=(const GridCellZ<float> &a) const

	

	
bool operator<=(const GridCellZ<float> &a) const

	

	
bool operator==(const GridCellZ<float> &a) const

	

	
bool operator!=(const GridCellZ<float> &a) const

	

Public Members

	
float z

	Grid cell’s z-coordinate.

	
template <class elev_t>

	
class GridCellZk

	#include <grid_cell.hpp>Stores the (x,y,z) coordinates of a grid cell and a priority indicator k; used by GridCellZk_pq.

Inherits from richdem::GridCellZ< elev_t >

Public Functions

	
GridCellZk(int x, int y, elev_t z, int k)

	

	
GridCellZk()

	

	
bool operator<(const GridCellZk<elev_t> &a) const

	

	
bool operator>(const GridCellZk<elev_t> &a) const

	

Public Members

	
int k

	Used to store an integer to make sorting stable.

	
template <typename T>

	
class GridCellZk_pq

	#include <grid_cell.hpp>A priority queue of GridCellZk, sorted by ascending height or, if heights are equal, by the order of insertion.

Inherits from std::priority_queue< GridCellZk< T >, std::vector< GridCellZk< T > >, std::greater< GridCellZk< T > > >

Public Functions

	
void push()

	

	
void emplace(int x, int y, T z)

	

Private Members

	
uint64_t count = 0

	

	
class LayoutfileReader

	#include <Layoutfile.hpp>Used for reading a layoutfile describing a tiled dataset.

The class acts as a generator. The layoutfile is read on construction and its contents retrieved with next(). The Layoutfile specification can be found in Layoutfile.hpp.

Public Functions

	
LayoutfileReader(std::string layout_filename)

	Construct a new LayoutfileReader object reading from a given file.

	Author

	Richard Barnes

	Parameters

	
	layout_filename: Layoutfile to read from.

	
bool next()

	Advance the reader to the next layoutfile entry.

	Return

	True if reader advanced successfully; false if not.

	
bool newRow() const

	
	Return

	True if the current entry is the beginning of a new row.

	
const std::string &getFilename() const

	
	Return

	The current entry’s filename without the path (e.g. “file.ext”).

	
const std::string &getBasename() const

	
	Return

	The current entry’s filename without the path or extension (e.g. “file”).

	
const std::string getFullPath() const

	
	Return

	The current entry’s path + filename (e.g. “path/to/file.ext”).

	
const std::string getGridLocName() const

	Return a string representation of the current entry’s coordinates.

A layoutfile is a 2D grid of file names. This method returns the current entry’s position in that grid as <X>_<Y>

	Return

	Current entry’s position as a string of the form <X>_<Y>

	
const std::string &getPath() const

	
	Return

	Path of layoutfile: of “path/to/layoutfile.layout” returns “path/to/”.

	
bool isNullTile() const

	
	Return

	True if the current entry was a blank

	
int getX() const

	
	Return

	X-coordinate of the current entry.

	
int getY() const

	
	Return

	Y-coordinate of the current entry.

Private Members

	
std::vector<std::vector<std::string>> fgrid

	Stores the grid of filenames extracted from the layoutfile.

	
int gridy = -1

	

	
int gridx = -2

	

	
int new_row = false

	

	
std::string filename

	

	
std::string basename

	

	
std::string path

	

	
class LayoutfileWriter

	#include <Layoutfile.hpp>Used for creating a layoutfile describing a tiled dataset.

The class acts as an inverse generator. The layoutfile is created on construction and its contents appended to with addEntry(). The Layoutfile specification can be found in Layoutfile.hpp.

Public Functions

	
LayoutfileWriter(std::string layout_filename)

	File output stream for the layout file.

Constructs a new writer object
	Parameters

	
	layout_filename: Path+Filename of layoutfile to write

	
~LayoutfileWriter()

	

	
void addRow()

	Adds a new row to the layoutfile.

	
void addEntry(std::string filename)

	Add a new entry to the layout file.

	Parameters

	
	filename: File to add. Use filename="" to indicate a null tile.

Private Members

	
int gridx

	

	
int gridy

	Current column being written to.

	
std::string path

	Current row being written to.

	
std::ofstream flout

	Path of layoutfile.

	
template <class T>

	
class LRU

	#include <lru.hpp>A Least-Recently Used (LRU) cache.

Public Functions

	
LRU()

	Construct a new LRU.

	
void insert(const T &entry)

	Insert an item into the LRU.

The item is either added to the queue or its entry is moved to the top of the queue. If the item is new and the length of the queue is greater than maxlen, then the least recently seen item is evicted from the queue.

	Parameters

	
	entry: The item to add to the queue.

	
int size() const

	Returns the number of itmes in the LRU cache.

	Return

	Number of items in the LRU cache

	
bool full() const

	Is the LRU cache full?

	Return

	True if the LRU cache is full; otherwise, false.

	
void setCapacity(int n)

	Set the maximum capacity of the LRU cache.

	
int getCapacity() const

	Returns the capacity of the LRU cache.

	Return

	The capacity of the LRU cache

	
T back() const

	Return the least-recently used item in the LRU cache.

	Return

	The least-recently used item in the LRU cache.

	
void pop_back()

	Evict the least-recently used item out of the LRU cache.

	
void prune()

	Evict items from the LRU cache until it is within its capacity.

Public Members

	
cachetype cache

	The cache.

Private Types

	
typedef std::list<T> cachetype

	Container used for storage by the cache.

Private Members

	
int len

	Number of items in the cache.

	
int maxlen

	Maximum size the cache is allowed to be.

	
T last

	Copy of the last inserted item. Speeds up insertion. TODO: This’d be better as a pointer.

	
std::unordered_map<T, typename std::list<T>::iterator> visited

	Used for O(1) access to members.

	
template <class T>

	
class ManagedVector

	#include <ManagedVector.hpp>ManagedVector works like a regular vector, but can wrap external memory.

Public Functions

	
ManagedVector()

	Creates an empty ManagedVector.

	
ManagedVector(std::size_t size, T default_val = T())

	Creates a ManagedVector with size members each set to default_val

	Parameters

	
	size: Number of elements to be created in the vector

	default_val: Initial value of the elements

	
ManagedVector(T *data, std::size_t size)

	Creates a ManagedVector which wraps data0 of length size0

	Parameters

	
	data: Memory to wrap

	size: Number of elements to wrap

	
template <class U>

	
ManagedVector(const ManagedVector<U> &other)

	

	
ManagedVector(const ManagedVector<T> &other)

	

	
template <class U>

	
ManagedVector(ManagedVector<U> &&other)

	

	
~ManagedVector()

	

	
template <class U>

	
ManagedVector<T> &operator=(const ManagedVector<U> &other)

	

	
template <class U>

	
ManagedVector<T> &operator=(ManagedVector<U> &&other)

	Move assignment operator

	
T *data()

	Get a raw pointer to the managed data

	Return

	A raw pointer to the managed data

	
const T *data() const

	Get a raw constant pointer to the managed data

	Return

	A raw constant pointer to the managed data

	
bool empty() const

	Are there more than zero elements being managed?

	Return

	True, if zero elements are managed; otherwise, false

	
std::size_t size() const

	Get the number of elements being managed

	Return

	The number of elements being managed

	
bool owned() const

	Determine whether the ManagedVector owns the memory it is managing

	Return

	True, if this ManagedVector owns its memory; otherwise, false

	
void resize(std::size_t new_size)

	

	
T &operator[](std::size_t i)

	

	
const T &operator[](std::size_t i) const

	

Private Members

	
std::unique_ptr<T[]> _data

	

	
bool _owned = true

	If this is true, we are responsible for clean-up of the data.

	
std::size_t _size = 0

	Number of elements being managed.

Friends

	
friend richdem::ManagedVector::ManagedVector

	

	
class ProgressBar

	#include <ProgressBar.hpp>Manages a console-based progress bar to keep the user entertained.

Defining the global NOPROGRESS will disable all progress operations, potentially speeding up a program. The look of the progress bar is shown in ProgressBar.hpp.

Public Functions

	
void start(uint32_t total_work)

	Start/reset the progress bar.

	Parameters

	
	total_work: The amount of work to be completed, usually specified in cells.

	
void update(uint32_t work_done0)

	Update the visible progress bar, but only if enough work has been done.

Define the global NOPROGRESS flag to prevent this from having an effect. Doing so may speed up the program’s execution.

	
ProgressBar &operator++()

	Increment by one the work done and update the progress bar.

	
double stop()

	Stop the progress bar. Throws an exception if it wasn’t started.
	Return

	The number of seconds the progress bar was running.

	
double time_it_took()

	
	Return

	Return the time the progress bar ran for.

	
uint32_t cellsProcessed() const

	

Private Functions

	
void clearConsoleLine() const

	Clear current line on console so a new progress bar can be written.

Private Members

	
uint32_t total_work

	Total work to be accomplished.

	
uint32_t next_update

	Next point to update the visible progress bar.

	
uint32_t call_diff

	Interval between updates in work units.

	
uint32_t work_done

	

	
uint16_t old_percent

	Old percentage value (aka: should we update the progress bar) TODO: Maybe that we do not need this.

	
Timer timer

	Used for generating ETA.

	
class StreamLogger

	
Public Functions

	
StreamLogger(LogFlag flag0, const char *file0, const char *func0, unsigned line0)

	

	
~StreamLogger()

	

	
template <typename T>

	
StreamLogger &operator<<(const T &t)

	

	
StreamLogger &operator<<(std::ostream &(*f)(std::ostream&))

	

Private Members

	
LogFlag flag

	

	
const char *file

	

	
const char *func

	

	
unsigned line

	

	
std::ostringstream ss

	

	
class TA_Setup_Curves_Vars

	
Public Members

	
double L

	

	
double D

	

	
double E

	

	
double F

	

	
double G

	

	
double H

	

	
class TA_Setup_Vars

	#include <terrain_attributes.hpp>Calculate a variety of terrain attributes.

This calculates a variety of terrain attributes according to the work of Burrough 1998’s “Principles of Geographical
Information Systems” (p. 190). Algorithms and helpful ArcGIS pages are noted in comments in the code.
	Author

	Richard Barnes (rbarnes@umn.edu), Burrough (1998)

	Pre

	This function should never be called on a NoData cell

	Parameters

	
	&elevations: An elevation grid

	x0: X coordinate of cell to perform calculation on

	y0: Y coordinate of cell to perform calculation on

	&rise_over_run: Returns rise-over-run slope as per Horn 1981

	&aspect: Returns aspect as per Horn 1981 in degrees [0,360). Degrees increase in a clockwise fashion. 0 is north, -1 indicates a flat surface.

	&curvature: Returns the difference of profile and planform curvatures (TODO: Clarify, this is from ArcGIS and was poorly described)

	&profile_curvature: Returns the profile curvature as per Zevenbergen and Thorne 1987. 0 indicates a flat surface.

	&planform_curvature: Returns the planform curvature as per Zevenbergen and Thorne 1987. 0 indicates a flat surface.

Public Members

	
double a

	

	
double b

	

	
double c

	

	
double d

	

	
double e

	

	
double f

	

	
double g

	

	
double h

	

	
double i

	

	
class Timer

	#include <timer.hpp>Used to time how intervals in code.

Such as how long it takes a given function to run, or how long I/O has taken.

Public Functions

	
Timer()

	Creates a Timer which is not running and has no accumulated time.

	
void start()

	Start the timers. Throws an exception if timer was already running.

	
double stop()

	Stop the timer. Throws an exception if timer was already stopped. Calling this adds to the timer’s accumulated time.

	Return

	The accumulated time in seconds.

	
double accumulated()

	Returns the timer’s accumulated time. Throws an exception if the timer is running.

	Return

	The timer’s accumulated time, in seconds.

	
double lap()

	Returns the time between when the timer was started and the current moment. Throws an exception if the timer is not running.

	Return

	Time since the timer was started and current moment, in seconds.

	
void reset()

	Stops the timer and resets its accumulated time. No exceptions are thrown ever.

Private Types

	
typedef std::chrono::high_resolution_clock clock

	

	
typedef std::chrono::duration<double, std::ratio<1>> second

	

Private Functions

	
double timediff(const std::chrono::time_point<clock> &start, const std::chrono::time_point<clock> &end)

	Number of (fractional) seconds between two time objects.

Private Members

	
std::chrono::time_point<clock> start_time

	Last time the timer was started.

	
double accumulated_time = 0

	Accumulated running time since creation.

	
bool running = false

	True when the timer is running.

	
class WrappedArray2D

	Inherits from richdem::Array2D< T >

Public Functions

	
template<>
void lazySetAll()

	

Public Members

	
template<>
bool null_tile = false

	

	
template<>
bool loaded = false

	

	
template<>
bool created = true

	

	
template<>
bool do_set_all = false

	

	
template<>
int create_with_width = -1

	

	
template<>
int create_with_height = -1

	

	
template<>
T set_all_val = 0

	

	
namespace richdem

	
Typedefs

	
typedef uint8_t d8_flowdir_t

	

	
using richdem::GridCellZ_pq = typedef std::priority_queue<GridCellZ<elev_t>, std::vector<GridCellZ<elev_t> >, std::greater<GridCellZ<elev_t> > >

	A priority queue of GridCellZ, sorted by ascending height.

	
typedef std::string RandomEngineState

	

	
typedef std::mt19937 our_random_engine

	

	
typedef char label_t

	

	
typedef std::deque<grid_cell> flat_type

	

Enums

	
enum Topology

	Values:

	
D8

	

	
D4

	

	
enum LogFlag

	Values:

	
ALG_NAME

	

	
CITATION

	

	
CONFIG

	

	
DEBUG

	

	
ERROR

	

	
MEM_USE

	

	
MISC

	

	
PROGRESS

	

	
TIME_USE

	

	
WARN

	

	
enum LindsayMode

	Values:

	
COMPLETE_BREACHING

	

	
SELECTIVE_BREACHING

	

	
CONSTRAINED_BREACHING

	

	
enum LindsayCellType

	Values:

	
UNVISITED

	

	
VISITED

	

	
EDGE

	

Functions

	
std::map<std::string, std::string> ProcessMetadata(char **metadata)

	

	
std::string TopologyName(Topology topo)

	

	
static std::string trimStr(std::string const &str)

	Eliminate spaces from the beginning and end of str.

	
static std::string GetBaseName(std::string filename)

	Get only the filename without its extension. That is, convert “path/to/file.ext” to “file”

	
void ProcessMemUsage(long &vmpeak, long &vmhwm)

	Return memory statistics of the process.

This code is drawn from “http://stackoverflow.com/a/671389/752843”

	Parameters

	
	vmpeak: Peak virtual memory size (kB)

	vmhwm: Peak resident set size (kB)

	
our_random_engine &rand_engine()

	

	
void seed_rand(unsigned long seed)

	

	
int uniform_rand_int(int from, int thru)

	

	
double uniform_rand_real(double from, double thru)

	

	
double normal_rand(double mean, double stddev)

	

	
RandomEngineState SaveRandomState()

	

	
void SetRandomState(const RandomEngineState &res)

	

	
template <class T>

	
T uniform_bits()

	

	
std::string rdHash()

	

	
std::string rdCompileTime()

	

	
std::string PrintRichdemHeader(int argc, char **argv)

	Takes the program’s command line arguments and prints to stdout a header with a variety of useful information for identifying the particulars of what was run.

	
template <Topology topo, class elev_t>

	
bool HasDepressions(const Array2D<elev_t> &elevations)

	Determine if a DEM has depressions.

Priority-Flood starts on the edges of the DEM and then works its way inwards using a priority queue to determine the lowest cell which has a path to the edge. The neighbours of this cell are added to the priority queue. If the neighbours are lower than the cell which is adding them, then they are part of a depression and the question is answered.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM. Note that the NoData value is assumed to be a negative number less than any actual data value.

	Return

	True if the DEM contains depressions; otherwise, false.

	Correctness:

	The correctness of this command is determined by inspection. (TODO)

	Parameters

	
	&elevations: A grid of cell elevations

	
template <Topology topo, class elev_t>

	
void PriorityFlood_Original(Array2D<elev_t> &elevations)

	Fills all pits and removes all digital dams from a DEM.

Priority-Flood starts on the edges of the DEM and then works its way inwards using a priority queue to determine the lowest cell which has a path to the edge. The neighbours of this cell are added to the priority queue. If the neighbours are lower than the cell which is adding them, then they are raised to match its elevation; this fills depressions.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM. Note that the NoData value is assumed to be a negative number less than any actual data value.

	Post

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM.

	elevations contains no landscape depressions or digital dams.

	Correctness:

	The correctness of this command is determined by inspection. (TODO)

	Parameters

	
	&elevations: A grid of cell elevations

	
template <Topology topo, class elev_t>

	
void PriorityFlood_Barnes2014(Array2D<elev_t> &elevations)

	Fills all pits and removes all digital dams from a DEM, but faster.

Priority-Flood starts on the edges of the DEM and then works its way inwards using a priority queue to determine the lowest cell which has a path to the edge. The neighbours of this cell are added to the priority queue if they are higher. If they are lower, they are raised to the elevation of the cell adding them, thereby filling in pits. The neighbors are then added to a “pit” queue which is used to flood pits. Cells which are higher than a pit being filled are added to the priority queue. In this way, pits are filled without incurring the expense of the priority queue.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM. Note that the NoData value is assumed to be a negative number less than any actual data value.

	Post

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM.

	elevations contains no landscape depressions or digital dams.

	Correctness:

	The correctness of this command is determined by inspection. (TODO)

	Parameters

	
	&elevations: A grid of cell elevations

	
template <Topology topo, class elev_t>

	
void PriorityFloodEpsilon_Barnes2014(Array2D<elev_t> &elevations)

	Modifies floating-point cell elevations to guarantee drainage.

This version of Priority-Flood starts on the edges of the DEM and then works its way inwards using a priority queue to determine the lowest cell which has a path to the edge. The neighbours of this cell are added to the priority queue if they are higher. If they are lower, then their elevation is increased by a small amount to ensure that they have a drainage path and they are added to a “pit” queue which is used to flood pits. Cells which are higher than a pit being filled are added to the priority queue. In this way, pits are filled without incurring the expense of the priority queue.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM. Note that the NoData value is assumed to be a negative number less than any actual data value.

	Post

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM.

	elevations has no landscape depressions, digital dams, or flats.

	Correctness:

	The correctness of this command is determined by inspection. (TODO)

	Parameters

	
	&elevations: A grid of cell elevations

	
template <Topology topo>

	
void PriorityFloodEpsilon_Barnes2014(Array2D<uint8_t> &elevations)

	Priority-Flood+Epsilon is not available for integer data types.

	
template <Topology topo>

	
void PriorityFloodEpsilon_Barnes2014(Array2D<uint16_t> &elevations)

	Priority-Flood+Epsilon is not available for integer data types.

	
template <Topology topo>

	
void PriorityFloodEpsilon_Barnes2014(Array2D<int16_t> &elevations)

	Priority-Flood+Epsilon is not available for integer data types.

	
template <Topology topo>

	
void PriorityFloodEpsilon_Barnes2014(Array2D<uint32_t> &elevations)

	Priority-Flood+Epsilon is not available for integer data types.

	
template <Topology topo>

	
void PriorityFloodEpsilon_Barnes2014(Array2D<int32_t> &elevations)

	Priority-Flood+Epsilon is not available for integer data types.

	
template <class elev_t>

	
void PriorityFloodFlowdirs_Barnes2014(const Array2D<elev_t> &elevations, Array2D<d8_flowdir_t> &flowdirs)

	Determines D8 flow directions and implicitly fills pits.

This version of Priority-Flood starts on the edges of the DEM and then works its way inwards using a priority queue to determine the lowest cell which has a path to the edge. The neighbours of this cell are given D8 flow directions which point to it. All depressions are implicitly filled and digital dams removed.
	Author

	Richard Barnes (rbarnes@umn.edu)

Based on Metz 2011.

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM. Note that the NoData value is assumed to be a negative number less than any actual data value.

	Post

	
	flowdirs contains a D8 flow direction of each cell or a value NO_FLOW for those cells which are not part of the DEM.

	flowdirs has no cells which are not part of a continuous flow path leading to the edge of the DEM.

	Correctness:

	The correctness of this command is determined by inspection. (TODO)

	Parameters

	
	&elevations: A grid of cell elevations

	&flowdirs: A grid of D8 flow directions

	
template <Topology topo, class elev_t>

	
void pit_mask(const Array2D<elev_t> &elevations, Array2D<uint8_t> &pit_mask)

	Indicates which cells are in pits.

This version of Priority-Flood starts on the edges of the DEM and then works its way inwards using a priority queue to determine the lowest cell which has a path to the edge. If a cell is lower than this cell then it is part of a pit and is given a value 1 to indicate this. The result is a grid where every cell which is in a pit is labeled.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM. Note that the NoData value is assumed to be a negative number less than any actual data value.

	Post

	
	pit_mask contains a 1 for each cell which is in a pit and a 0 for each cell which is not. The value 3 indicates NoData

	Correctness:

	The correctness of this command is determined by inspection. (TODO)

	Parameters

	
	&elevations: A grid of cell elevations

	&pit_mask: A grid of indicating which cells are in pits

	
template <Topology topo, class elev_t>

	
void PriorityFloodWatersheds_Barnes2014(Array2D<elev_t> &elevations, Array2D<int32_t> &labels, bool alter_elevations)

	Gives a common label to all cells which drain to a common point.

All the edge cells of the DEM are given unique labels. This version of Priority-Flood starts on the edges of the DEM and then works its way inwards using a priority queue to determine the lowest cell which has a path to the edge. The neighbours of this cell are then given its label. All depressions are implicitly filled and digital dams removed. The result is a grid of cells where all cells with a common label drain to a common point.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM. Note that the NoData value is assumed to be a negative number less than any actual data value.

	Post

	
	elevations contains no depressions or digital dams, if alter_elevations** was set.

	labels contains a label for each cell indicating its membership in a given watershed. Cells bearing common labels drain to common points.

	Correctness:

	The correctness of this command is determined by inspection. (TODO)

	Parameters

	
	elevations: A grid of cell elevations

	labels: A grid to hold the watershed labels

	alter_elevations: If true, then elevations is altered as though PriorityFlood_Barnes2014() had been applied. The result is that all cells drain to the edges of the DEM. Otherwise, elevations is not altered.

	
template <Topology topo, class elev_t>

	
void PriorityFlood_Barnes2014_max_dep(Array2D<elev_t> &elevations, uint64_t max_dep_size)

	Fill depressions, but only if they’re small.

Priority-Flood starts on the edges of the DEM and then works its way inwards using a priority queue to determine the lowest cell which has a path to the edge. The neighbours of this cell are added to the priority queue if they are higher. If they are lower, they are raised to the elevation of the cell adding them, thereby filling in pits. The neighbors are then added to a “pit” queue which is used to flood pits. Cells which are higher than a pit being filled are added to the priority queue. In this way, pits are filled without incurring the expense of the priority queue.
	Author

	Richard Barnes (rbarnes@umn.edu)

When a depression is encountered this command measures its size before filling it. Only small depressions are filled.

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM. Note that the NoData value is assumed to be a negative number less than any actual data value.

	Post

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM.

	elevations all landscape depressions <=max_dep_size are filled.

	Correctness:

	The correctness of this command is determined by inspection. (TODO)

	Parameters

	
	&elevations: A grid of cell elevations

	max_dep_size: Depression must have <=max_dep_size cells to be filled

	
template <Topology topo, class T>

	
void FillDepressions(Array2D<T> &dem)

	

	
template <Topology topo, class T>

	
void FillDepressionsEpsilon(Array2D<T> &dem)

	

	
template <Topology topo, class T>

	
void BreachDepressions(Array2D<T> &dem)

	

	
template <Topology topo, class elev_t>

	
void CompleteBreaching_Lindsay2016(Array2D<elev_t> &dem)

	Breach depressions.

Depression breaching drills a path from a depression’s pit cell (its lowest point) along the least-cost (Priority-Flood) path to the nearest cell outside the depression to have the same or lower elevation.
	Author

	John Lindsay, implementation by Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM. Note that the NoData value is assumed to be a negative number less than any actual data value.

	Return

	The breached DEM.

	Correctness:

	The correctness of this command is determined by inspection and simple unit tests.

	Parameters

	
	&elevations: A grid of cell elevations

	
template <class elev_t>

	
void Lindsay2016(Array2D<elev_t> &dem, int mode, bool eps_gradients, bool fill_depressions, uint32_t maxpathlen, elev_t maxdepth)

	Breach and fill depressions (EXPERIMENTAL)

Depression breaching drills a path from a depression’s pit cell (its lowest point) along the shortest path to the nearest cell outside the depression to have the same or lower elevation.
	Author

	John Lindsay, implementation by Richard Barnes (rbarnes@umn.edu)

Several modes are available including:

Complete Breaching: All depressions are entirely breached. Selective Breaching: Depressions are breached provided the breaching path is not too long nor too deep. That which cannot be breached is filled. Breaching only takes place if the path meets the criteria. Constrained Breaching: A braching path is drilled as long and as deep as permitted, but no more.

NOTE: It is possible these three modes should be split into different functions.

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM. Note that the NoData value is assumed to be a negative number less than any actual data value.

	Return

	The breached DEM.

	Correctness:

	The correctness of this command is determined by inspection and simple unit tests.

	Parameters

	
	&elevations: A grid of cell elevations

	mode: A LindsayMode value of COMPLETE_BREACHING, SELECTIVE_BREACHING, or CONSTRAINED_BREACHING.

	eps_gradients: If True, then epsilon gradients are applied to breaching paths and depressions to ensure drainage.

	fill_depresssions: If True, then depressions are filled.

	maxpathlen: Maximum length of a breaching path

	maxdepth: Maximum depth of a breaching path

	
template <Topology topo>

	
void Lindsay2016(Array2D<uint8_t> &dem, int mode, bool eps_gradients, bool fill_depressions, uint32_t maxpathlen, uint8_t maxdepth)

	

	
template <Topology topo>

	
void Lindsay2016(Array2D<int16_t> &dem, int mode, bool eps_gradients, bool fill_depressions, uint32_t maxpathlen, int16_t maxdepth)

	

	
template <Topology topo>

	
void Lindsay2016(Array2D<uint16_t> &dem, int mode, bool eps_gradients, bool fill_depressions, uint32_t maxpathlen, uint16_t maxdepth)

	

	
template <class T>

	
static void InitPriorityQue(Array2D<T> &dem, Array2D<bool> &flag, GridCellZ_pq<T> &priorityQueue)

	

	
template <class T>

	
static void ProcessTraceQue(Array2D<T> &dem, Array2D<bool> &flag, std::queue<GridCellZ<T>> &traceQueue, GridCellZ_pq<T> &priorityQueue)

	

	
template <class T>

	
static void ProcessPit(Array2D<T> &dem, Array2D<bool> &flag, std::queue<GridCellZ<T>> &depressionQue, std::queue<GridCellZ<T>> &traceQueue, GridCellZ_pq<T> &priorityQueue)

	

	
template <class T>

	
void PriorityFlood_Wei2018(Array2D<T> &dem)

	

	
template <class elev_t>

	
void ProcessTraceQue_onepass(Array2D<elev_t> &dem, Array2D<label_t> &labels, std::queue<int> &traceQueue, std::priority_queue<std::pair<elev_t, int>, std::vector<std::pair<elev_t, int>>, std::greater<std::pair<elev_t, int>>> &priorityQueue)

	

	
template <class elev_t>

	
void ProcessPit_onepass(elev_t c_elev, Array2D<elev_t> &dem, Array2D<label_t> &labels, std::queue<int> &depressionQue, std::queue<int> &traceQueue, std::priority_queue<std::pair<elev_t, int>, std::vector<std::pair<elev_t, int>>, std::greater<std::pair<elev_t, int>>> &priorityQueue)

	

	
template <class elev_t>

	
void PriorityFlood_Zhou2016(Array2D<elev_t> &dem)

	Fills all pits and removes all digital dams from a DEM, quickly.

Works similarly to the Priority-Flood described by Barnes et al. (2014), but reduces the number of items which must pass through the priority queue, thus achieving greater efficiencies.
	Author

	G. Zhou, Z. Sun, S. Fu, Richard Barnes (this implementation)

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM. Note that the NoData value is assumed to be a negative number less than any actual data value.

	Post

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM.

	elevations contains no landscape depressions or digital dams.

	Parameters

	
	&dem: A grid of cell elevations

	
static void BuildAwayGradient(const Array2D<int8_t> &flats, Array2D<int32_t> &flat_mask, std::deque<GridCell> &high_edges, std::vector<int> &flat_height, const Array2D<int32_t> &labels)

	Build a gradient away from the high edges of the flats.

The queue of high-edge cells developed in FindFlatEdges() is copied into the procedure. A breadth-first expansion labels cells by their distance away from terrain of higher elevation. The maximal distance encountered is noted.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	Every cell in labels is marked either 0, indicating that the cell is not part of a flat, or a number greater than zero which identifies the flat to which the cell belongs.

	Any cell without a local gradient is marked IS_A_FLAT in flats.

	Every cell in flat_mask is initialized to 0.

	edges contains, in no particular order, all the high edge cells of the DEM (those flat cells adjacent to higher terrain) which are part of drainable flats.

	Post

	
	flat_height will have an entry for each label value of labels indicating the maximal number of increments to be applied to the flat identified by that label.

	flat_mask will contain the number of increments to be applied to each cell to form a gradient away from higher terrain; cells not in a flat will have a value of 0.

	Parameters

	
	&flats: 2D array indicating flat membership from FindFlats()

	&flat_mask: A 2D array for storing flat_mask

	&edges: The high-edge FIFO queue from FindFlatEdges()

	&flat_height: Vector with length equal to max number of labels

	&labels: 2D array storing labels developed in LabelFlat()

	
static void BuildTowardsCombinedGradient(Array2D<int8_t> &flats, Array2D<int32_t> &flat_mask, std::deque<GridCell> &low_edges, std::vector<int> &flat_height, const Array2D<int32_t> &labels)

	Builds gradient away from the low edges of flats, combines gradients.

The queue of low-edge cells developed in FindFlatEdges() is copied into the procedure. A breadth-first expansion labels cells by their distance away from terrain of lower elevation. This is combined with the gradient from BuildAwayGradient() to give the final increments of each cell in forming the flat mask.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	Every cell in labels is marked either 0, indicating that the cell is not part of a flat, or a number greater than zero which identifies the flat to which the cell belongs.

	Any cell without a local gradient is marked IS_A_FLAT in flats.

	Every cell in flat_mask has either a value of 0, indicating that the cell is not part of a flat, or a value greater than zero indicating the number of increments which must be added to it to form a gradient away from higher terrain.

	flat_height has an entry for each label value of labels indicating the maximal number of increments to be applied to the flat identified by that label in order to form the gradient away from higher terrain.

	edges contains, in no particular order, all the low edge cells of the DEM (those flat cells adjacent to lower terrain).

	Post

	
	flat_mask will contain the number of increments to be applied to each cell to form a superposition of the gradient away from higher terrain with the gradient towards lower terrain; cells not in a flat have a value of 0.

	Parameters

	
	&flats: 2D array indicating flat membership from FindFlats()

	&flat_mask: A 2D array for storing flat_mask

	&edges: The low-edge FIFO queue from FindFlatEdges()

	&flat_height: Vector with length equal to max number of labels

	&labels: 2D array storing labels developed in LabelFlat()

	
template <class T>

	
static void LabelFlat(const int x0, const int y0, const int label, Array2D<int32_t> &labels, const Array2D<T> &elevations)

	Labels all the cells of a flat with a common label.

Performs a flood fill operation which labels all the cells of a flat with a common label. Each flat will have a unique label
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM.

	labels has the same dimensions as elevations.

	(x0,y0) belongs to the flat which is to be labeled.

	label is a unique label which has not been previously applied to a flat.

	labels is initialized to zero prior to the first call to this function.

	Post

	
	(x0,y0) and every cell reachable from it by passing over only cells of the same elevation as it (all the cells in the flat to which c belongs) will be marked as label in labels.

	Parameters

	
	x0: x-coordinate of flood fill seed

	y0: y-coordinate of flood-fill seed

	label: Label to apply to the cells

	&labels: 2D array which will contain the labels

	&elevations: 2D array of cell elevations

	
template <class T>

	
static void FindFlatEdges(std::deque<GridCell> &low_edges, std::deque<GridCell> &high_edges, const Array2D<int8_t> &flats, const Array2D<T> &elevations)

	Identifies cells adjacent to higher and lower terrain.

Cells adjacent to lower and higher terrain are identified and added to the appropriate queue
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM.

	Any cell without a local gradient is marked IS_A_FLAT in flats.

	Post

	
	high_edges will contain, in no particular order, all the high edge cells of the DEM: those flat cells adjacent to higher terrain.

	low_edges will contain, in no particular order, all the low edge cells of the DEM: those flat cells adjacent to lower terrain.

	Parameters

	
	&low_edges: Queue for storing cells adjacent to lower terrain

	&high_edges: Queue for storing cells adjacent to higher terrain

	&flats: 2D array indicating flat membership from FindFlats()

	&elevations: 2D array of cell elevations

	
template <class T>

	
void GetFlatMask(const Array2D<T> &elevations, Array2D<int32_t> &flat_mask, Array2D<int32_t> &labels)

	Generates a flat resolution mask in the style of Barnes (2014)

This algorithm is a modification of that presented by Barnes (2014). It has been rejiggered so that a knowledge of flow directions is not necessary to run it.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or the NoData value for cells not part of the DEM.

	Post

	
	flat_mask will have a value greater than or equal to zero for every cell, indicating its number of increments. These can be used be used in conjunction with labels to determine flow directions without altering the DEM, or to alter the DEM in subtle ways to direct flow.

	labels will have values greater than or equal to 1 for every cell which is in a flat. Each flat’s cells will bear a label unique to that flat. A value of 0 means the cell is not part of a flat.

	Parameters

	
	&elevations: 2D array of cell elevations

	&flat_mask: 2D array which will hold incremental elevation mask

	&labels: 2D array indicating flat membership

	
template <class U>

	
void ResolveFlatsEpsilon_Barnes2014(const Array2D<int32_t> &flat_mask, const Array2D<int32_t> &labels, Array2D<U> &elevations)

	Alters the elevations of the DEM so that all flats drain.

This alters elevations within the DEM so that flats which have been resolved using GetFlatMask() will drain.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	flat_mask contains the number of increments to be applied to each cell to form a gradient which will drain the flat it is a part of.

	If a cell is part of a flat, it has a value greater than zero in labels** indicating which flat it is a member of; otherwise, it has a value of 0.

	Post

	
	Every cell whose part of a flat which could be drained will have its elevation altered in such a way as to guarantee that its flat does drain.

	Parameters

	
	&flat_mask: A mask from GetFlatMask()

	&labels: A grouping from GetFlatMask()

	&elevations: 2D array of elevations

	
template <class U>

	
void ResolveFlatsFlowdirs_Barnes2014(const Array2D<int32_t> &flat_mask, const Array2D<int32_t> &labels, Array2D<U> &flowdirs)

	Calculates flow directions in flats.

This determines flow directions within flats which have been resolved using GetFlatMask().
	Author

	Richard Barnes (rbarnes@umn.edu)

Uses the helper function D8MaskedFlowdir()

	Pre

	
	flat_mask contains the number of increments to be applied to each cell to form a gradient which will drain the flat it is a part of.

	Any cell without a local gradient has a value of NO_FLOW_GEN in flowdirs**; all other cells have defined flow directions.

	If a cell is part of a flat, it has a value greater than zero in labels** indicating which flat it is a member of; otherwise, it has a value of 0.

	Post

	
	Every cell whose flow direction could be resolved by this algorithm (all drainable flats) will have a defined flow direction in flowdirs**. Any cells which could not be resolved (non-drainable flats) will still be marked NO_FLOW_GEN.

	Parameters

	
	&flat_mask: A mask from GetFlatMask()

	&labels: The labels output from GetFlatMask()

	&flowdirs: Returns flat-resolved flow directions

	
template <class T>

	
void FindFlats(const Array2D<T> &elevations, Array2D<int8_t> &flats)

	Finds flats: cells with no local gradient.

TODO
	Author

	Richard Barnes (rbarnes@umn.edu)

	Post

	
	flats contains the value 1 for each cell in a flat (all cells without a local gradient), 0 for each cell not in a flat (all cells with a local gradient), and -1 for each no data cell.

	Parameters

	
	&elevations: An elevation field

	&flats: An array of flat indicators (post-conditions)

	
static int d8_masked_FlowDir(const Array2D<int32_t> &flat_mask, const Array2D<int32_t> &labels, const int x, const int y)

	Helper function to d8_flow_flats()

This determines a cell’s flow direction, taking into account flat membership. It is a helper function to d8_flow_flats()
	Author

	Richard Barnes (rbarnes@umn.edu)

	Return

	The flow direction of the cell

	Parameters

	
	&flat_mask: A mask from resolve_flats_barnes()

	&labels: The labels output from resolve_flats_barnes()

	x: x coordinate of cell

	y: y coordinate of cell

	
template <class U>

	
void d8_flow_flats(const Array2D<int32_t> &flat_mask, const Array2D<int32_t> &labels, Array2D<U> &flowdirs)

	Calculates flow directions in flats.

This determines flow directions within flats which have been resolved using resolve_flats_barnes().
	Author

	Richard Barnes (rbarnes@umn.edu)

Uses the helper function d8_masked_FlowDir()

	Pre

	
	flat_mask contains the number of increments to be applied to each cell to form a gradient which will drain the flat it is a part of.

	Any cell without a local gradient has a value of NO_FLOW in flowdirs**; all other cells have defined flow directions.

	If a cell is part of a flat, it has a value greater than zero in labels** indicating which flat it is a member of; otherwise, it has a value of 0.

	Post

	
	Every cell whose flow direction could be resolved by this algorithm (all drainable flats) will have a defined flow direction in flowdirs**. Any cells which could not be resolved (non-drainable flats) will still be marked NO_FLOW.

	Parameters

	
	&flat_mask: A mask from resolve_flats_barnes()

	&labels: The labels output from resolve_flats_barnes()

	&flowdirs: Returns flat-resolved flow directions

	
template <class U>

	
static void BuildAwayGradient(const Array2D<U> &flowdirs, Array2D<int32_t> &flat_mask, std::deque<GridCell> edges, std::vector<int> &flat_height, const Array2D<int32_t> &labels)

	Build a gradient away from the high edges of the flats.

The queue of high-edge cells developed in find_flat_edges() is copied into the procedure. A breadth-first expansion labels cells by their distance away from terrain of higher elevation. The maximal distance encountered is noted.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	Every cell in labels is marked either 0, indicating that the cell is not part of a flat, or a number greater than zero which identifies the flat to which the cell belongs.

	Any cell without a local gradient is marked NO_FLOW in flowdirs.

	Every cell in flat_mask is initialized to 0.

	edges contains, in no particular order, all the high edge cells of the DEM (those flat cells adjacent to higher terrain) which are part of drainable flats.

	Post

	
	flat_height will have an entry for each label value of labels indicating the maximal number of increments to be applied to the flat identified by that label.

	flat_mask will contain the number of increments to be applied to each cell to form a gradient away from higher terrain; cells not in a flat will have a value of 0.

	Parameters

	
	&flowdirs: A 2D array indicating each cell’s flow direction

	&flat_mask: A 2D array for storing flat_mask

	&edges: The high-edge FIFO queue from find_flat_edges()

	&flat_height: Vector with length equal to max number of labels

	&labels: 2D array storing labels developed in label_this()

	
template <class U>

	
static void BuildTowardsCombinedGradient(const Array2D<U> &flowdirs, Array2D<int32_t> &flat_mask, std::deque<GridCell> edges, std::vector<int> &flat_height, const Array2D<int32_t> &labels)

	Builds gradient away from the low edges of flats, combines gradients.

The queue of low-edge cells developed in find_flat_edges() is copied into the procedure. A breadth-first expansion labels cells by their distance away from terrain of lower elevation. This is combined with the gradient from BuildAwayGradient() to give the final increments of each cell in forming the flat mask.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	Every cell in labels is marked either 0, indicating that the cell is not part of a flat, or a number greater than zero which identifies the flat to which the cell belongs.

	Any cell without a local gradient is marked NO_FLOW in flowdirs.

	Every cell in flat_mask has either a value of 0, indicating that the cell is not part of a flat, or a value greater than zero indicating the number of increments which must be added to it to form a gradient away from higher terrain.

	flat_height has an entry for each label value of labels indicating the maximal number of increments to be applied to the flat identified by that label in order to form the gradient away from higher terrain.

	edges contains, in no particular order, all the low edge cells of the DEM (those flat cells adjacent to lower terrain).

	Post

	
	flat_mask will contain the number of increments to be applied to each cell to form a superposition of the gradient away from higher terrain with the gradient towards lower terrain; cells not in a flat have a value of 0.

	Parameters

	
	&flowdirs: A 2D array indicating each cell’s flow direction

	&flat_mask: A 2D array for storing flat_mask

	&edges: The low-edge FIFO queue from find_flat_edges()

	&flat_height: Vector with length equal to max number of labels

	&labels: 2D array storing labels developed in label_this()

	
template <class T>

	
static void label_this(int x0, int y0, const int label, Array2D<int32_t> &labels, const Array2D<T> &elevations)

	Labels all the cells of a flat with a common label.

Performs a flood fill operation which labels all the cells of a flat with a common label. Each flat will have a unique label
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM.

	labels has the same dimensions as elevations.

	(x0,y0) belongs to the flat which is to be labeled.

	label is a unique label which has not been previously applied to a flat.

	labels is initialized to zero prior to the first call to this function.

	Post

	
	(x0,y0) and every cell reachable from it by passing over only cells of the same elevation as it (all the cells in the flat to which c belongs) will be marked as label in labels.

	Parameters

	
	x0: x-coordinate of flood fill seed

	y0: y-coordinate of flood-fill seed

	label: Label to apply to the cells

	&labels: 2D array which will contain the labels

	&elevations: 2D array of cell elevations

	
template <class T, class U>

	
static void find_flat_edges(std::deque<GridCell> &low_edges, std::deque<GridCell> &high_edges, const Array2D<U> &flowdirs, const Array2D<T> &elevations)

	Identifies cells adjacent to higher and lower terrain.

Cells adjacent to lower and higher terrain are identified and added to the appropriate queue
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or a value NoData for cells not part of the DEM.

	Any cell without a local gradient is marked NO_FLOW in flowdirs.

	Post

	
	high_edges will contain, in no particular order, all the high edge cells of the DEM: those flat cells adjacent to higher terrain.

	low_edges will contain, in no particular order, all the low edge cells of the DEM: those flat cells adjacent to lower terrain.

	Parameters

	
	&low_edges: Queue for storing cells adjacent to lower terrain

	&high_edges: Queue for storing cells adjacent to higher terrain

	&flowdirs: 2D array indicating flow direction for each cell

	&elevations: 2D array of cell elevations

	
template <class T, class U>

	
void resolve_flats_barnes(const Array2D<T> &elevations, const Array2D<U> &flowdirs, Array2D<int32_t> &flat_mask, Array2D<int32_t> &labels)

	Performs the flat resolution by Barnes, Lehman, and Mulla.

TODO
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	elevations contains the elevations of every cell or the NoData value for cells not part of the DEM.

	Any cell without a local gradient is marked NO_FLOW in flowdirs.

	Post

	
	flat_mask will have a value greater than or equal to zero for every cell, indicating its number of increments. These can be used be used in conjunction with labels to determine flow directions without altering the DEM, or to alter the DEM in subtle ways to direct flow.

	labels will have values greater than or equal to 1 for every cell which is in a flat. Each flat’s cells will bear a label unique to that flat.

	Parameters

	
	&elevations: 2D array of cell elevations

	&flowdirs: 2D array indicating flow direction of each cell

	&flat_mask: 2D array which will hold incremental elevation mask

	&labels: 2D array indicating flat membership

	
template <class U>

	
void d8_flats_alter_dem(const Array2D<int32_t> &flat_mask, const Array2D<int32_t> &labels, Array2D<U> &elevations)

	Alters the elevations of the DEM so that all flats drain.

This alters elevations within the DEM so that flats which have been resolved using resolve_flats_barnes() will drain.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	flat_mask contains the number of increments to be applied to each cell to form a gradient which will drain the flat it is a part of.

	If a cell is part of a flat, it has a value greater than zero in labels** indicating which flat it is a member of; otherwise, it has a value of 0.

	Post

	
	Every cell whose part of a flat which could be drained will have its elevation altered in such a way as to guarantee that its flat does drain.

	Parameters

	
	&flat_mask: A mask from resolve_flats_barnes()

	&labels: A grouping from resolve_flats_barnes()

	&elevations: 2D array of elevations

	
template <class T, class U>

	
void barnes_flat_resolution_d8(Array2D<T> &elevations, Array2D<U> &flowdirs, bool alter)

	

	
static float dinf_masked_FlowDir(const Array2D<int32_t> &flat_resolution_mask, const Array2D<int32_t> &groups, const int x, const int y)

	

	
void dinf_flow_flats(const Array2D<int32_t> &flat_resolution_mask, const Array2D<int32_t> &groups, Array2D<float> &flowdirs)

	

	
template <class T>

	
void resolve_flats_barnes_dinf(const Array2D<T> &elevations, Array2D<float> &flowdirs)

	

	
template <class T>

	
void ResolveFlatsEpsilon(Array2D<T> &elevations)

	Alters the elevations of the DEM so that all flats drain.

This alters elevations within the DEM so that all cells will have a drainage path.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Post

	
	Every cell which is part of a flat that can be drained will have its elevation altered in such a way as to guarantee that it does drain.

	Parameters

	
	&elevations: An elevations field

	
void FindFlats(const Array2D<uint8_t> &flowdirs, flat_type &flats)

	

	
template <class T>

	
void GradientTowardsLower(const Array2D<T> &elevations, const Array2D<uint8_t> &flowdirs, flat_type &flats, Array2D<int32_t> &inc1)

	

	
template <class T>

	
void GradientAwayFromHigher(const Array2D<T> &elevations, const Array2D<uint8_t> &flowdirs, flat_type &flats, Array2D<int32_t> &inc2)

	

	
template <class T>

	
void CombineGradients(Array2D<T> &elevations, const Array2D<int32_t> &inc1, const Array2D<int32_t> &inc2, float epsilon)

	

	
template <class T>

	
void GarbrechtAlg(Array2D<T> &elevations, Array2D<uint8_t> &flowdirs)

	

	
template <class T>

	
static int d8_FlowDir(const Array2D<T> &elevations, const int x, const int y)

	Calculates the D8 flow direction of a cell.

This calculates the D8 flow direction of a cell using the D8 neighbour system, as defined in utility.h. Cells on the edge of the grid flow off the nearest edge.
	Author

	Richard Barnes (rbarnes@umn.edu)

Helper function for d8_flow_directions().

	Return

	The D8 flow direction of the cell

	Parameters

	
	&elevations: A DEM

	x: x coordinate of cell

	y: y coordinate of cell

	
template <class T, class U>

	
void d8_flow_directions(const Array2D<T> &elevations, Array2D<U> &flowdirs)

	Calculates the D8 flow directions of a DEM.

This calculates the D8 flow directions of a DEM. Its argument ‘flowdirs’ will return a grid with flow directions using the D8 neighbour system, as defined in utility.h. The choice of data type for array2d must be able to hold exact values for all neighbour identifiers (usually [-1,7]).
	Author

	Richard Barnes (rbarnes@umn.edu)

Uses d8_FlowDir() as a helper function.

	Parameters

	
	&elevations: A DEM

	&flowdirs: Returns the flow direction of each cell

	
template <class T>

	
static float dinf_FlowDir(const Array2D<T> &elevations, const int x, const int y)

	Determine the D-infinite flow direction of a cell.

This function determines the D-infinite flow direction of a cell, as described by Tarboton (1997) and Barnes (2013, TODO). TODO
	Author

	Implementation by Richard Barnes (rbarnes@umn.edu)

	Return

	A floating-point value between [0,2*Pi) indicating flow direction

	Parameters

	
	elevations: A 2D grid of elevation data

	x: x-coordinate of cell to determine flow direction for

	y: y-coordinate of cell to determine flow direction for

	
template <class T>

	
void dinf_flow_directions(const Array2D<T> &elevations, Array2D<float> &flowdirs)

	Determine the D-infinite flow direction of every cell in a grid.

This function runs dinf_FlowDir() on every cell in a grid which has a data value.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Parameters

	
	&elevations: A 2D grid of elevation data

	&flowdirs: A 2D grid which will contain the flow directions

	
template <Topology topo, class elev_t>

	
void FM_FairfieldLeymarie(const Array2D<elev_t> &elevations, Array3D<float> &props)

	

	
template <class elev_t>

	
void FM_Rho8(const Array2D<elev_t> &elevations, Array3D<float> &props)

	

	
template <class elev_t>

	
void FM_Rho4(const Array2D<elev_t> &elevations, Array3D<float> &props)

	

	
template <class E>

	
void FM_Freeman(const Array2D<E> &elevations, Array3D<float> &props, const double xparam)

	

	
template <class E>

	
void FM_Holmgren(const Array2D<E> &elevations, Array3D<float> &props, const double xparam)

	

	
template <Topology topo, class elev_t>

	
void FM_OCallaghan(const Array2D<elev_t> &elevations, Array3D<float> &props)

	

	
template <class elev_t>

	
void FM_D8(const Array2D<elev_t> &elevations, Array3D<float> &props)

	

	
template <class elev_t>

	
void FM_D4(const Array2D<elev_t> &elevations, Array3D<float> &props)

	

	
template <class E>

	
void FM_Quinn(const Array2D<E> &elevations, Array3D<float> &props)

	

	
template <class elev_t>

	
void FM_Tarboton(const Array2D<elev_t> &elevations, Array3D<float> &props)

	

	
template <class E>

	
void FM_Dinfinity(const Array2D<E> &elevations, Array3D<float> &props)

	

	
template <class T>

	
static T sgn(T val)

	Returns the sign (+1, -1, 0) of a number. Branchless.

	Author

	Richard Barnes (rbarnes@umn.edu)

	Return

	-1 for a negative input, +1 for a positive input, and 0 for a zero input

	Parameters

	
	val: Input value

	
template <class T, class U>

	
void d8_flow_accum(const Array2D<T> &flowdirs, Array2D<U> &area)

	Calculates the D8 flow accumulation, given the D8 flow directions.

This calculates the D8 flow accumulation of a grid of D8 flow directions by calculating each cell’s dependency on its neighbours and then using a priority-queue to process cells in a top-of-the-watershed-down fashion
	Author

	Richard Barnes (rbarnes@umn.edu)

	Parameters

	
	&flowdirs: A D8 flowdir grid from d8_flow_directions()

	&area: Returns the up-slope area of each cell

	
template <class T, class U>

	
void d8_upslope_cells(int x0, int y0, int x1, int y1, const Array2D<T> &flowdirs, Array2D<U> &upslope_cells)

	Calculates which cells ultimately D8-flow through a given cell.

Given the coordinates x0,y0 of a cell and x1,y1 of another, possibly distinct, cell this draws a line between the two using the Bresenham Line-Drawing Algorithm and returns a grid showing all the cells whose flow ultimately passes through the indicated cells.
	Author

	Richard Barnes (rbarnes@umn.edu)

The grid has the values:

1=Upslope cell 2=Member of initializing line All other cells have a noData() value

	Parameters

	
	x0: x-coordinate of start of line

	y0: y-coordinate of start of line

	x1: x-coordinate of end of line

	y1: y-coordinate of end of line

	&flowdirs: A D8 flowdir grid from d8_flow_directions()

	&upslope_cells: A grid of 1/2/NoData, as in the description

	
static void where_do_i_flow(float flowdir, int &nhigh, int &nlow)

	

	
static void area_proportion(float flowdir, int nhigh, int nlow, float &phigh, float &plow)

	

	
template <class T, class U>

	
void dinf_upslope_area(const Array2D<T> &flowdirs, Array2D<U> &area)

	Calculate each cell’s D-infinity flow accumulation value.

TODO
	Author

	Tarboton (1997), Richard Barnes (rbarnes@umn.edu)

	Parameters

	
	flowdirs: A grid of D-infinite flow directions

	&area: A grid of flow accumulation values

	
template <class elev_t, class accum_t>

	
void FA_Tarboton(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum)

	

	
template <class elev_t, class accum_t>

	
void FA_Dinfinity(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum)

	

	
template <class elev_t, class accum_t>

	
void FA_Holmgren(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum, double xparam)

	

	
template <class elev_t, class accum_t>

	
void FA_Quinn(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum)

	

	
template <class elev_t, class accum_t>

	
void FA_Freeman(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum, double xparam)

	

	
template <class elev_t, class accum_t>

	
void FA_FairfieldLeymarieD8(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum)

	

	
template <class elev_t, class accum_t>

	
void FA_FairfieldLeymarieD4(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum)

	

	
template <class elev_t, class accum_t>

	
void FA_Rho8(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum)

	

	
template <class elev_t, class accum_t>

	
void FA_Rho4(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum)

	

	
template <class elev_t, class accum_t>

	
void FA_OCallaghanD8(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum)

	

	
template <class elev_t, class accum_t>

	
void FA_OCallaghanD4(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum)

	

	
template <class elev_t, class accum_t>

	
void FA_D8(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum)

	

	
template <class elev_t, class accum_t>

	
void FA_D4(const Array2D<elev_t> &elevations, Array2D<accum_t> &accum)

	

	
template <class A>

	
void FlowAccumulation(const Array3D<float> &props, Array2D<A> &accum)

	Calculate flow accumulation from a flow metric array.

Given a flow metric function func, this calculations the flow accumulation.
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	
	The accumulation matrix must already be initialized to the amount of flow each cell will generate. A good default value is 1, in which case the accumulation matrix will be modified to show how many cells’ flow ultimately passes through each cell.

	Post

	
	accum is modified so that each cell indicates how much upstrema flow passes through it (in addition to flow generated within the cell itself).

	Parameters

	
	func: The flow metric to use

	&elevations: An elevation field

	&accum: Accumulation matrix: must be already initialized

	args: Arguments passed to the flow metric (e.g. exponent)

	
template <class T, class U, class V>

	
void TA_SPI(const Array2D<T> &flow_accumulation, const Array2D<U> &riserun_slope, Array2D<V> &result)

	Calculates the SPI terrain attribute.

\((\textit{CellSize}\cdot\textit{FlowAccumulation}+0.001)\cdot(\frac{1}{100}\textit{PercentSlope}+0.001)\)
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	flow_accumulation and percent_slope must be the same size

	Post

	result takes the properties and dimensions of flow_accumulation

	Parameters

	
	&flow_accumulation: A flow accumulation grid (dinf_upslope_area())

	&riserun_slope: A percent_slope grid (d8_slope())

	&result: Altered to return the calculated SPI

	
template <class T, class U, class V>

	
void TA_CTI(const Array2D<T> &flow_accumulation, const Array2D<U> &riserun_slope, Array2D<V> &result)

	Calculates the CTI terrain attribute.

\(\log{\frac{\textit{CellSize}\cdot\textit{FlowAccumulation}+0.001}{\frac{1}{100}\textit{PercentSlope}+0.001}}\)
	Author

	Richard Barnes (rbarnes@umn.edu)

	Pre

	flow_accumulation and percent_slope must be the same size

	Post

	result takes the properties and dimensions of flow_accumulation

	Parameters

	
	&flow_accumulation: A flow accumulation grid (dinf_upslope_area())

	&riserun_slope: A percent_slope grid (d8_slope())

	&result: Altered to return the calculated SPI

	
template <class T>

	
static TA_Setup_Vars TerrainSetup(const Array2D<T> &elevations, const int x, const int y, const float zscale)

	

	
template <class T>

	
static TA_Setup_Curves_Vars TerrainCurvatureSetup(const Array2D<T> &elevations, const int x, const int y, const float zscale)

	

	
template <class T>

	
static double Terrain_Aspect(const Array2D<T> &elevations, const int x, const int y, const float zscale)

	Calculates aspect in degrees in the manner of Horn 1981.

	Return

	Aspect in degrees in the manner of Horn 1981

	
template <class T>

	
static double Terrain_Slope_RiseRun(const Array2D<T> &elevations, const int x, const int y, const float zscale)

	Calculates the rise/run slope along the maximum gradient on a fitted surface over a 3x3 be neighbourhood in the manner of Horn 1981.

	Return

	Rise/run slope

	
template <class T>

	
static double Terrain_Curvature(const Array2D<T> &elevations, const int x, const int y, const float zscale)

	

	
template <class T>

	
static double Terrain_Planform_Curvature(const Array2D<T> &elevations, const int x, const int y, const float zscale)

	

	
template <class T>

	
static double Terrain_Profile_Curvature(const Array2D<T> &elevations, const int x, const int y, const float zscale)

	

	
template <class T>

	
static double Terrain_Slope_Percent(const Array2D<T> &elevations, const int x, const int y, const float zscale)

	

	
template <class T>

	
static double Terrain_Slope_Radian(const Array2D<T> &elevations, const int x, const int y, const float zscale)

	

	
template <class T>

	
static double Terrain_Slope_Degree(const Array2D<T> &elevations, const int x, const int y, const float zscale)

	

	
template <class F, class T>

	
static void TerrainProcessor(F func, const Array2D<T> &elevations, const float zscale, Array2D<float> &output)

	Calculate a variety of terrain attributes.

This calculates a variety of terrain attributes according to the work of Burrough 1998’s “Principles of Geographical
Information Systems” (p. 190). This function calls d8_terrain_attrib_helper to calculate the actual attributes. This function may perform some post-processing (such as on slope), but it’s purpose is essentially to just scan the grid and pass off the work to d8_terrain_attrib_helper().
	Author

	Richard Barnes (rbarnes@umn.edu), Burrough (1998)

Possible attribute values are
	TATTRIB_CURVATURE

	TATTRIB_PLANFORM_CURVATURE

	TATTRIB_PROFILE_CURVATURE

	TATTRIB_ASPECT

	TATTRIB_SLOPE_RISERUN

	TATTRIB_SLOPE_PERCENT

	TATTRIB_SLOPE_RADIAN

	TATTRIB_SLOPE_DEGREE

	Post

	output takes the properties and dimensions of elevations

	Parameters

	
	func: The attribute function to be used

	&elevations: An elevation grid

	zscale: Value by which to scale elevation

	&output: A grid to hold the results

	
template <class T>

	
void TA_slope_riserun(const Array2D<T> &elevations, Array2D<float> &slopes, float zscale = 1.0f)

	Calculates the slope as rise/run.

Calculates the slope using Horn 1981, as per Burrough 1998’s “Principles of Geographical Information Systems” (p. 190)
	Author

	Richard Barnes (rbarnes@umn.edu), Horn (1981)

	Parameters

	
	&elevations: An elevation grid

	&slopes: A slope grid

	zscale: DEM is scaled by this factor prior to calculation

	
template <class T>

	
void TA_slope_percentage(const Array2D<T> &elevations, Array2D<float> &slopes, float zscale = 1.0f)

	Calculates the slope as percentage.

Calculates the slope using Horn 1981, as per Burrough 1998’s “Principles of Geographical Information Systems” (p. 190)
	Author

	Richard Barnes (rbarnes@umn.edu), Horn (1981)

	Parameters

	
	&elevations: An elevation grid

	&slopes: A slope grid

	zscale: DEM is scaled by this factor prior to calculation

	
template <class T>

	
void TA_slope_degrees(const Array2D<T> &elevations, Array2D<float> &slopes, float zscale = 1.0f)

	Calculates the slope as degrees.

Calculates the slope using Horn 1981, as per Burrough 1998’s “Principles of Geographical Information Systems” (p. 190)
	Author

	Richard Barnes (rbarnes@umn.edu), Horn (1981)

	Parameters

	
	&elevations: An elevation grid

	&slopes: A slope grid

	zscale: DEM is scaled by this factor prior to calculation

	
template <class T>

	
void TA_slope_radians(const Array2D<T> &elevations, Array2D<float> &slopes, float zscale = 1.0f)

	Calculates the slope as radians.

Calculates the slope using Horn 1981, as per Burrough 1998’s “Principles of Geographical Information Systems” (p. 190)
	Author

	Richard Barnes (rbarnes@umn.edu), Horn (1981)

	Parameters

	
	&elevations: An elevation grid

	&slopes: A slope grid

	zscale: DEM is scaled by this factor prior to calculation

	
template <class T>

	
void TA_aspect(const Array2D<T> &elevations, Array2D<float> &aspects, float zscale = 1.0f)

	Calculates the terrain aspect.

Calculates the aspect per Horn 1981, as described by Burrough 1998’s “Principles of Geographical Information Systems” (p. 190) The value return is in Degrees.
	Author

	Richard Barnes (rbarnes@umn.edu), Horn (1981)

	Parameters

	
	&elevations: An elevation grid

	&aspects: An aspect grid

	zscale: DEM is scaled by this factor prior to calculation

	
template <class T>

	
void TA_curvature(const Array2D<T> &elevations, Array2D<float> &curvatures, float zscale = 1.0f)

	Calculates the terrain curvature per Zevenbergen and Thorne 1987.

Calculates the curvature per Zevenbergen and Thorne 1987, as described by Burrough 1998’s “Principles of Geographical Information Systems” (p. 190)
	Author

	Richard Barnes (rbarnes@umn.edu), Horn (1981)

	Parameters

	
	&elevations: An elevation grid

	&curvatures: A curvature grid

	zscale: DEM is scaled by this factor prior to calculation

	
template <class T>

	
void TA_planform_curvature(const Array2D<T> &elevations, Array2D<float> &planform_curvatures, float zscale = 1.0f)

	Calculates the terrain planform curvature per Zevenbergen and Thorne 1987.

Calculates the curvature per Zevenbergen and Thorne 1987, as described by Burrough 1998’s “Principles of Geographical Information Systems” (p. 190)
	Author

	Richard Barnes (rbarnes@umn.edu), Horn (1981)

	Parameters

	
	&elevations: An elevation grid

	&planform_curvatures: A planform curvature grid

	zscale: DEM is scaled by this factor prior to calculation

	
template <class T>

	
void TA_profile_curvature(const Array2D<T> &elevations, Array2D<float> &profile_curvatures, float zscale = 1.0f)

	Calculates the terrain profile curvature per Zevenbergen and Thorne 1987.

Calculates the curvature per Zevenbergen and Thorne 1987, as described by Burrough 1998’s “Principles of Geographical Information Systems” (p. 190)
	Author

	Richard Barnes (rbarnes@umn.edu), Horn (1981)

	Parameters

	
	&elevations: An elevation grid

	&profile_curvatures: A profile curvature grid

	zscale: DEM is scaled by this factor prior to calculation

	
void RDLOGfunc(LogFlag flag, const char *file, const char *func, unsigned line, std::string msg)

	

	
GDALDataType peekLayoutType(const std::string &layout_filename)

	

	
int peekLayoutTileSize(const std::string &layout_filename)

	

Variables

	
const int dx[9] = {0, -1, -1, 0, 1, 1, 1, 0, -1}

	x offsets of D8 neighbours, from a central cell

	
const int dy[9] = {0, 0, -1, -1, -1, 0, 1, 1, 1}

	y offsets of D8 neighbours, from a central cell

	
const bool n_diag[9] = {0, 0, 1, 0, 1, 0, 1, 0, 1}

	True along diagonal directions, false along north, south, east, west.

	
const int D8_WEST = 1

	

	
const int D8_NORTH = 3

	

	
const int D8_EAST = 5

	

	
const int D8_SOUTH = 7

	

	
const int *const d8x = dx

	

	
const int *const d8y = dy

	

	
const int d4x[5] = {0, -1, 0, 1, 0}

	x offsets of D4 neighbours, from a central cell

	
const int d4y[5] = {0, 0, -1, 0, 1}

	y offsets of D4 neighbours, from a central cell

	
const int D4_WEST = 1

	

	
const int D4_NORTH = 2

	

	
const int D4_EAST = 3

	

	
const int D4_SOUTH = 4

	

	
const int d8_inverse[9] = {0,5,6,7,8,1,2,3,4}

	Directions from neighbours to the central cell. Neighbours are labeled 0-8. This is the inverse direction leading from a neighbour to the central cell.

	
const double SQRT2 = 1.414213562373095048801688724209698078569671875376948

	sqrt(2), used to generate distances from a central cell to its neighbours

	
const double dr[9] = {0,1,SQRT2,1,SQRT2,1,SQRT2,1,SQRT2}

	Distances from a central cell to each of its 8 neighbours.

	
const uint8_t d8_arcgis[9] = {0,16,32,64,128,1,2,4,8}

	Convert from RichDEM flowdirs to ArcGIS flowdirs.

	
const uint8_t FLOWDIR_NO_DATA = 255

	Used to indicate that a flowdir cell is NoData.

	
const d8_flowdir_t NO_FLOW = 0

	Value used to indicate that a cell does not have a defined flow direction.

	
const float NO_FLOW_GEN = -1

	Value used to indicate NoFlow in generic flow metric outputs.

	
const float HAS_FLOW_GEN = 0

	

	
const float NO_DATA_GEN = -2

	

	
const int32_t ACCUM_NO_DATA = -1

	Value used to indicate that a flow accumulation cell is NoData.

	
const uint8_t GRID_LEFT = 1

	Indicates a tile is on the LHS of a DEM.

	
const uint8_t GRID_TOP = 2

	Indicates a tile is on the top of a DEM.

	
const uint8_t GRID_RIGHT = 4

	Indicates a tile is on the RHS of a DEM.

	
const uint8_t GRID_BOTTOM = 8

	Indicates a tile is on the bottom of a DEM.

	
const std::string git_hash = "NO HASH SPECIFIED!"

	Git hash of program’s source (used if RICHDEM_GIT_HASH is undefined)

	
const std::string compilation_datetime = __DATE__ " " __TIME__

	Date and time of when the program was compiled (used if RICHDEM_COMPILE_TIME is undefined)

	
const std::string program_name = "RichDEM v2.2.9"

	Richdem vX.X.X.

	
const std::string author_name = "Richard Barnes"

	Richard Barnes.

	
const std::string copyright = "Richard Barnes © 2018"

	Richard Barnes © 2018.

	
const std::string program_identifier = program_name + " (hash=" + git_hash + ", compiled="+compilation_datetime + ")"

	Richdem vX.X.X (hash=GIT HASH, compiled=COMPILATION DATE TIME)

	
const float d8_to_dinf[9] ={-1, 4*M_PI/4, 3*M_PI/4, 2*M_PI/4, 1*M_PI/4, 0, 7*M_PI/4, 6*M_PI/4, 5*M_PI/4}

	

	
const int dy_e1[8] = { 0 , -1 , -1 , 0 , 0 , 1 , 1 , 0 }

	

	
const int dx_e1[8] = { 1 , 0 , 0 , -1 , -1 , 0 , 0 , 1 }

	

	
const int dy_e2[8] = {-1 , -1 , -1 , -1 , 1 , 1 , 1 , 1 }

	

	
const int dx_e2[8] = { 1 , 1 , -1 , -1 , -1 , -1 , 1 , 1 }

	

	
const double ac[8] = { 0., 1., 1., 2., 2., 3., 3., 4.}

	

	
const double af[8] = { 1., -1., 1., -1., 1., -1., 1., -1.}

	

	
const int dinf_dx[9] = {1, 1, 0, -1, -1, -1, 0, 1, 1}

	

	
const int dinf_dy[9] = {0, -1, -1, -1, 0, 1, 1, 1, 0}

	

	
std::map<LogFlag, std::string> log_flag_chars_begin = {
 {ALG_NAME, "\nA"},
 {CITATION, "C"},
 {CONFIG, "c"},
 {DEBUG, "\033[95md"},
 {ERROR, "E"},
 {MEM_USE, " "},
 {MISC, "m"},
 {PROGRESS, "p"},
 {TIME_USE, "t"},
 {WARN, "\033[91mW"}
}

	

	
std::map<LogFlag, std::string> log_flag_chars_end = {
 {ALG_NAME, ""},
 {CITATION, "\n"},
 {CONFIG, ""},
 {DEBUG, ""},
 {ERROR, ""},
 {MEM_USE, ""},
 {MISC, ""},
 {PROGRESS, ""},
 {TIME_USE, ""},
 {WARN, ""}
}

	

	
namespace std

	

	
file Array2D.hpp

	#include “gdal.hpp”#include <array>#include <vector>#include <iostream>#include <fstream>#include <iomanip>#include <cassert>#include <algorithm>#include <typeinfo>#include <stdexcept>#include <limits>#include <ctime>#include <cmath>#include <unordered_set>#include <map>#include “richdem/common/Array3D.hpp”#include “richdem/common/logger.hpp”#include “richdem/common/version.hpp”#include “richdem/common/constants.hpp”#include “richdem/common/ManagedVector.hpp”Defines a 2D array object with many convenient methods for working with raster data, along with several functions for checking file data types.

Richard Barnes (rbarnes@umn.edu), 2015

	
file Array3D.hpp

	#include “gdal.hpp”#include <vector>#include <iostream>#include <fstream>#include <iomanip>#include <cassert>#include <algorithm>#include <typeinfo>#include <stdexcept>#include <limits>#include <ctime>#include <unordered_set>#include <map>#include “richdem/common/Array2D.hpp”#include “richdem/common/logger.hpp”#include “richdem/common/version.hpp”#include “richdem/common/constants.hpp”#include “richdem/common/ManagedVector.hpp”Defines a 3D array object with convenient methods for working raster data where information about neighbours needs to be stored and processed.

Richard Barnes (rbarnes@umn.edu), 2018

	
file communication-threads.hpp

	#include <cereal/types/string.hpp>#include <cereal/types/vector.hpp>#include <cereal/types/map.hpp>#include <cereal/archives/binary.hpp>#include <sstream>#include <vector>#include <queue>#include <map>#include <atomic>#include <iterator>#include <cassert>#include <iostream>#include <list>#include <chrono>
Defines

	
_unused(x)

	

Functions

	
template <class Fn>

	
void CommInit(int n, Fn &&fn, int *argc, char ***argv)

	

	
template <class T, class U>

	
void CommSend(const T *a, const U *b, int dest, int tag)

	

	
template <class T>

	
void CommSend(const T *a, nullptr_t, int dest, int tag)

	

	
int CommGetTag(int from)

	

	
int CommGetSource()

	

	
int CommRank()

	

	
int CommSize()

	

	
void CommAbort(int errorcode)

	

	
template <class T, class U>

	
void CommRecv(T *a, U *b, int from)

	

	
template <class T>

	
void CommRecv(T *a, nullptr_t, int from)

	

	
template <class T>

	
void CommBroadcast(T *datum, int root)

	

	
void CommFinalize()

	

	
int CommBytesSent()

	

	
int CommBytesRecv()

	

	
void CommBytesReset()

	

	
void CommBarrier()

	

	
file communication.hpp

	#include <mpi.h>#include <cereal/types/string.hpp>#include <cereal/types/vector.hpp>#include <cereal/types/map.hpp>#include <cereal/archives/binary.hpp>#include <sstream>#include <vector>#include <iterator>#include <cassert>#include <iostream>#include <thread>#include <chrono>Abstract calls to MPI, allowing for transparent serialization and communication stats.

Richard Barnes (rbarnes@umn.edu), 2015

Defines

	
_unused(x)

	Used to hide the fact that some variables are used only for assertions.

Typedefs

	
typedef uint64_t comm_count_type

	Data type used for storing Tx/Rx byte counts.

	
typedef std::vector<char> msg_type

	Data type for incoming/outgoing messages.

Functions

	
void CommInit(int *argc, char ***argv)

	Initiate communication (wrapper for MPI_Init)

	
template <class T, class U>

	
msg_type CommPrepare(const T *a, const U *b)

	Convert up to two objects into a combined serialized representation.

	
template <class T>

	
msg_type CommPrepare(const T *a, std::nullptr_t)

	Convert one object into a serialized representation.

	
template <class T, class U>

	
void CommSend(const T *a, const U *b, int dest, int tag)

	Serialize and send up to two objects.

	
template <class T>

	
void CommSend(const T *a, std::nullptr_t, int dest, int tag)

	Serialize and send a single object.

	
void CommISend(msg_type &msg, int dest, int tag)

	Send a pre-serialized object using non-blocking communication.

The object must be pre-serialized because the buffer containing the serialization must persist until the communication is complete. It makes more sense to manage this buffer outside of this library.

	
int CommGetTag(int from)

	Check tag of incoming message. Blocksing.

	
int CommRank()

	Get my unique process identifier (i.e. rank)

	
int CommSize()

	How many processes are active?

	
void CommAbort(int errorcode)

	Abort; If any process calls this it will kill all the processes.

	
template <class T, class U>

	
void CommRecv(T *a, U *b, int from)

	Receive up to two objects and deserialize them.

	
template <class T>

	
void CommRecv(T *a, std::nullptr_t, int from)

	Receive one object and deserialize it.

	
template <class T>

	
void CommBroadcast(T *datum, int root)

	Broadcast a message to all of the processes. (TODO: An integer message?)

	
void CommFinalize()

	Wrap things up politely; call this when all communication is done.

	
comm_count_type CommBytesSent()

	Get the number of bytes sent by this process.

	Return

	Number of bytes sent by this process

	
comm_count_type CommBytesRecv()

	Get the number of bytes received by this process.

	Return

	Number of bytes received by this process

	
void CommBytesReset()

	Reset message size statistics to zero.

Variables

	
comm_count_type bytes_sent = 0

	Number of bytes sent.

	
comm_count_type bytes_recv = 0

	Number of bytes received.

	
file constants.hpp

	#include <cstdint>#include <stdexcept>#include <string>Defines a number of constants used by many of the algorithms.

RichDEM uses the following D8 neighbourhood. This is used by the dx[] and dy[] variables, among many others. 234
105
876

ArcGIS uses the following bits to indicate flow toward a given neighbour: 32 64 128
16 0 1
 8 4 2

	
file gdal.hpp

	

	
file grid_cell.hpp

	#include <vector>#include <queue>#include <cmath>#include <functional>Defines structures for addressing grid cells and associated queues.

Richard Barnes (rbarnes@umn.edu), 2015

	
file Layoutfile.hpp

	#include “richdem/common/logger.hpp”#include <string>#include <vector>#include <fstream>#include <sstream>#include <iostream>#include <cassert>#include <stdexcept>Defines classes used for reading and writing tiled datasets.

A layout file is a text file with the format: file1.tif, file2.tif, file3.tif,
file4.tif, file5.tif, file6.tif, file7.tif
 , file8.tif, ,

where each of fileX.tif is a tile of the larger DEM collectively described by all of the files. All of fileX.tif must have the same shape; the layout file specifies how fileX.tif are arranged in relation to each other in space. Blanks between commas indicate that there is no tile there: the algorithm will treat such gaps as places to route flow towards (as if they are oceans). Note that the files need not have TIF format: they can be of any type which GDAL can read. Paths to fileX.tif are taken to be relative to the layout file.

Richard Barnes (rbarnes@umn.edu), 2015

	
file logger.hpp

	#include <iostream>#include <sstream>#include <string>
Defines

	
RDLOG(flag)

	

	
RDLOG_ALG_NAME

	

	
RDLOG_CITATION

	

	
RDLOG_CONFIG

	

	
RDLOG_DEBUG

	

	
RDLOG_ERROR

	

	
RDLOG_MEM_USE

	

	
RDLOG_MISC

	

	
RDLOG_PROGRESS

	

	
RDLOG_TIME_USE

	

	
RDLOG_WARN

	

	
file ManagedVector.hpp

	#include <memory>

	
file memory.hpp

	#include <fstream>#include <string>Defines functions for calculating memory usage.

Richard Barnes (rbarnes@umn.edu), 2015

	
file ProgressBar.hpp

	#include <string>#include <iostream>#include <iomanip>#include <stdexcept>#include “richdem/common/timer.hpp”Defines a handy progress bar object so users don’t get impatient.

The progress bar indicates to the user how much work has been completed, how much is left, and how long it is estimated to take. It accounts for multithreading by assuming uniform progress by all threads.

Define the global macro NOPROGRESS disables the progress bar, which may speed up the program.

The progress bar looks like this: [===================================] (70% - 0.2s - 1 threads)

Richard Barnes (rbarnes@umn.edu), 2015

Defines

	
omp_get_thread_num()

	Macros used to disguise the fact that we do not have multithreading enabled.

	
omp_get_num_threads()

	

	
file random.cpp

	#include “random.hpp”#include <cassert>#include <random>#include <cstdint>#include <algorithm>#include <iostream>#include <functional>#include <limits>#include <sstream>

	
file random.hpp

	#include <random>#include <string>
Defines

	
PRNG_THREAD_MAX

	Maximum number of threads this class should deal with.

	
omp_get_thread_num()

	

	
omp_get_num_threads()

	

	
omp_get_max_threads()

	

	
file timer.hpp

	#include <chrono>#include <stdexcept>Defines the Timer class, which is used for timing code.

Richard Barnes (rbarnes@umn.edu), 2015

	
file version.hpp

	#include <string>#include <iostream>Defines RichDEM version, git hash, compilation time. Used for program/app headers and for processing history entries.

Richard Barnes (rbarnes@umn.edu), 2015

	
file Barnes2014.hpp

	#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/grid_cell.hpp”#include “richdem/flowmet/d8_flowdirs.hpp”#include <queue>#include <limits>#include <iostream>#include <cstdlib>Defines all the Priority-Flood algorithms described by Barnes (2014) “Priority-Flood: An Optimal Depression-Filling and Watershed-Labeling Algorithm for Digital Elevation Models”.

Richard Barnes (rbarnes@umn.edu), 2015

	
file Barnes2014.hpp

	#include <richdem/common/logger.hpp>#include <richdem/common/ProgressBar.hpp>#include <richdem/common/grid_cell.hpp>#include <richdem/common/Array2D.hpp>#include <richdem/flats/find_flats.hpp>#include <deque>#include <vector>#include <queue>#include <cmath>#include <limits>Resolve flats according to Barnes (2014)

Contains code to generate an elevation mask which is guaranteed to drain a flat using a convergent flow pattern (unless it’s a mesa)
	Author

	Richard Barnes (rbarnes@umn.edu), 2012

	
file depressions.hpp

	#include <richdem/common/constants.hpp>#include <richdem/depressions/Barnes2014.hpp>#include <richdem/depressions/Lindsay2016.hpp>#include <richdem/depressions/Wei2018.hpp>#include <richdem/depressions/Zhou2016.hpp>#include <stdexcept>

	
file Lindsay2016.hpp

	#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/grid_cell.hpp”#include “richdem/common/ProgressBar.hpp”#include “richdem/common/timer.hpp”#include <limits>

	
file main.cpp

	#include “richdem/common/interface.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/depressions/Barnes2014.hpp”#include <string>#include <iostream>#include <cstdint>
Functions

	
template <class elev_t>

	
int PerformAlgorithm(char alg, std::string filename, std::string output_prefix)

	

	
int main(int argc, char **argv)

	

	
file main.cpp

	#include <iostream>#include <cstdint>#include <string>#include “richdem/common/Array2D.hpp”#include “richdem/flats/flat_resolution.hpp”#include “richdem/flats/garbrecht.hpp”
Functions

	
template <class T>

	
int PerformAlgorithm(std::string alg, std::string filename, std::string output)

	

	
int main(int argc, char **argv)

	

	
file README.md

	

	
file README.md

	

	
file Wei2018.hpp

	#include <richdem/common/Array2D.hpp>#include <richdem/common/logger.hpp>#include <richdem/common/grid_cell.hpp>#include <richdem/common/timer.hpp>#include <iostream>#include <queue>

	
file Zhou2016.hpp

	#include <richdem/common/logger.hpp>#include <richdem/common/Array2D.hpp>#include <richdem/common/timer.hpp>#include <queue>#include <vector>#include <map>#include <iostream>Defines the Priority-Flood algorithm described by Zhou, G., Sun, Z., Fu, S., 2016. An efficient variant of the Priority-Flood algorithm for filling depressions in raster digital elevation models. Computers & Geosciences 90, Part A, 87 – 96. doi:http://dx.doi.org/10.1016/j.cageo.2016.02.021.

The code herein has been extensive modified by Richard Barnes (rbarnes@umn.edu) for inclusion with RichDEM.

Richard Barnes (rbarnes@umn.edu), 2015

	
file find_flats.hpp

	#include <richdem/common/logger.hpp>#include <richdem/common/ProgressBar.hpp>#include <richdem/common/Array2D.hpp>
Defines

	
FLAT_NO_DATA

	

	
NOT_A_FLAT

	

	
IS_A_FLAT

	

	
file flat_resolution.hpp

	#include “richdem/common/logger.hpp”#include “richdem/common/ProgressBar.hpp”#include “richdem/common/grid_cell.hpp”#include “richdem/flowmet/d8_flowdirs.hpp”#include <deque>#include <vector>#include <queue>#include <cmath>#include <limits>Resolve flats according to Barnes (2014)

Contains code to generate an elevation mask which is guaranteed to drain a flat using a convergent flow pattern (unless it’s a mesa)
	Author

	Richard Barnes (rbarnes@umn.edu), 2012

	
file flat_resolution_dinf.hpp

	#include “richdem/flats/flat_resolution.hpp”#include “richdem/flowmet/dinf_flowdirs.hpp”#include “richdem/common/logger.hpp”Couples the Barnes (2014) flat resolution algorithm with the Tarboton (1997) D-infinity flow metric.

	Author

	Richard Barnes

	
file flats.hpp

	#include <richdem/flats/Barnes2014.hpp>

	
file garbrecht.hpp

	#include <deque>#include <cstdint>#include <iostream>#include “richdem/common/Array2D.hpp”#include “richdem/common/grid_cell.hpp”#include “richdem/flowmet/d8_flowdirs.hpp”#include “richdem/common/logger.hpp”

	
file generate_square_grid.cpp

	#include <iostream>#include <fstream>#include <cstdlib>
Defines

	
XBIG

	

	
YBIG

	

	
IN_GRID(x, y)

	

	
EDGE_GRID(x, y)

	

Functions

	
int PrintDEM()

	

	
int GenerateDEM()

	

	
int main(int argc, char **argv)

	

Variables

	
char elevations[XBIG][YBIG]

	

	
int x_max

	

	
int y_max

	

	
file d8_flowdirs.hpp

	#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/ProgressBar.hpp”Functions for calculating D8 flow directions.

Richard Barnes (rbarnes@umn.edu), 2015

	
file dinf_flowdirs.hpp

	#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/ProgressBar.hpp”Defines the D-infinite flow routing method described by Tarboton (1997)

This file implements the D-infinite flow routing method originally described by Tarboton (1997). It incorporates minor alterations and additional safe-guards described in Barnes (TODO).

Richard Barnes (rbarnes@umn.edu), 2015

Defines

	
dinf_NO_DATA

	Value used to indicate that a flow direction cell has no data.

	
file Fairfield1991.hpp

	#include “richdem/common/constants.hpp”#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/Array3D.hpp”#include “richdem/common/ProgressBar.hpp”#include “richdem/common/random.hpp”

	
file Freeman1991.hpp

	#include “richdem/common/constants.hpp”#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/Array3D.hpp”#include “richdem/common/ProgressBar.hpp”

	
file Holmgren1994.hpp

	#include “richdem/common/constants.hpp”#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/Array3D.hpp”#include “richdem/common/ProgressBar.hpp”

	
file OCallaghan1984.hpp

	#include “richdem/common/constants.hpp”#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/Array3D.hpp”#include “richdem/common/ProgressBar.hpp”

	
file Orlandini2003.hpp

	

	
file Quinn1991.hpp

	#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/Array3D.hpp”#include <richdem/flowmet/Holmgren1994.hpp>

	
file Seibert2007.hpp

	

	
file Tarboton1997.hpp

	#include “richdem/common/constants.hpp”#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/Array3D.hpp”#include “richdem/common/ProgressBar.hpp”#include <cmath>

	
file d8_methods.hpp

	#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/constants.hpp”#include “richdem/common/grid_cell.hpp”#include “richdem/common/ProgressBar.hpp”#include <queue>#include <stdexcept>Defines a number of functions for calculating terrain attributes.

Richard Barnes (rbarnes@umn.edu), 2015

	
file dinf_methods.hpp

	#include <cmath>#include <queue>#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/constants.hpp”#include “richdem/common/ProgressBar.hpp”#include “richdem/common/grid_cell.hpp”Terrain attributes that can only be calculated with Tarboton’s D-infinity flow metric.

This file implements the D-infinite flow routing method originally described by Tarboton (1997). It incorporates minor alterations and additional safe-guards described in Barnes (2013, TODO).
	Author

	Richard Barnes (rbarnes@umn.edu), 2015

	
file flow_accumulation.hpp

	#include <richdem/flowmet/Fairfield1991.hpp>#include <richdem/flowmet/Freeman1991.hpp>#include <richdem/flowmet/Holmgren1994.hpp>#include <richdem/flowmet/OCallaghan1984.hpp>#include <richdem/flowmet/Orlandini2003.hpp>#include <richdem/flowmet/Quinn1991.hpp>#include <richdem/flowmet/Seibert2007.hpp>#include <richdem/flowmet/Tarboton1997.hpp>#include <richdem/methods/flow_accumulation_generic.hpp>

	
file flow_accumulation_generic.hpp

	#include <richdem/common/Array2D.hpp>#include <richdem/common/logger.hpp>#include <richdem/common/ProgressBar.hpp>#include <queue>

	
file strahler.hpp

	

	
file terrain_attributes.hpp

	#include “richdem/common/logger.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/common/constants.hpp”#include “richdem/common/ProgressBar.hpp”

	
file misc_methods.hpp

	#include <cmath>#include <queue>#include <stdexcept>#include <cassert>#include “richdem/common/Array2D.hpp”#include “richdem/common/constants.hpp”#include “richdem/common/ProgressBar.hpp”Terrain attributes that can only be calculated with Tarboton’s D-infinity flow metric.

This file implements the D-infinite flow routing method originally described by Tarboton (1997). It incorporates minor alterations and additional safe-guards described in Barnes (2013, TODO).
	Author

	Richard Barnes (rbarnes@umn.edu), 2015

Enums

	
enum PerimType

	Calculates the perimeter of a digital elevation model.

Calculates the perimeter of a DEM in one of several ways: CELL_COUNT - # of cells bordering edges or NoData cells SQUARE_EDGE - Summation of all edges touch borders or NoData cells
	Author

	Richard Barnes (rbarnes@umn.edu)

	Return

	The surface area of the digital elevation model

	Parameters

	
	&arr:

Values:

	
CELL_COUNT

	Counts # of cells bordering DEM edges or NoData cells.

	
SQUARE_EDGE

	Adds all cell edges bordering DEM edges or NoData cells.

Functions

	
template <class T>

	
double dem_surface_area(const Array2D<T> &elevations, const double zscale)

	Calculate the surface of a digital elevation model.

Calculates the surface area of a digital elevation model by connecting the central points of cells with triangles and then calculating the area of the portion of each triangle which falls within the focal cell. The method is described in detail in Jenness (2004) <doi:10.2193/0091-7648(2004)032[0829:CLSAFD]2.0.CO;2>
	Author

	Jenness (2004), Richard Barnes (rbarnes@umn.edu)

	Return

	The surface area of the digital elevation model

	Parameters

	
	&elevations: A grid of elevations

	zscale: DEM is scaled by this factor prior to calculation

	
template <class T>

	
double Perimeter(const Array2D<T> &arr, const PerimType perim_type)

	

	
file richdem.cpp

	#include “richdem/common/logger.hpp”#include <map>#include <string>

	
file richdem.hpp

	#include “common/Array2D.hpp”#include “common/constants.hpp”#include “common/grid_cell.hpp”#include “common/ManagedVector.hpp”#include “common/memory.hpp”#include “common/ProgressBar.hpp”#include “common/random.hpp”#include “common/timer.hpp”#include “common/version.hpp”#include “depressions/Barnes2014.hpp”#include “depressions/depressions.hpp”#include “depressions/Lindsay2016.hpp”#include “depressions/Zhou2016.hpp”#include “flats/flat_resolution.hpp”#include “flats/flat_resolution_dinf.hpp”#include “flowmet/d8_flowdirs.hpp”#include “flowmet/dinf_flowdirs.hpp”#include “flowmet/Fairfield1991.hpp”#include “flowmet/Freeman1991.hpp”#include “flowmet/Holmgren1994.hpp”#include “flowmet/OCallaghan1984.hpp”#include “flowmet/Orlandini2003.hpp”#include “flowmet/Quinn1991.hpp”#include “flowmet/Seibert2007.hpp”#include “flowmet/Tarboton1997.hpp”#include “methods/d8_methods.hpp”#include “methods/dinf_methods.hpp”#include “methods/flow_accumulation.hpp”#include “methods/flow_accumulation_generic.hpp”#include “methods/strahler.hpp”#include “methods/terrain_attributes.hpp”

	
file A2Array2D.hpp

	#include “richdem/common/logger.hpp”#include “richdem/common/Layoutfile.hpp”#include “richdem/common/Array2D.hpp”#include “richdem/tiled/lru.hpp”#include “gdal_priv.h”Experimental tile manager for large datasets (TODO)

	Author

	Richard Barnes

	
file lru.hpp

	#include <list>#include <unordered_map>Defines a Least-Recently Used (LRU) cache class.

Richard Barnes (rbarnes@umn.edu), 2016

	
page md__home_docs_checkouts_readthedocs.org_user_builds_richdem_checkouts_stable_include_richdem_depressions_README

	Title of Manuscript: Priority-Flood: An Optimal Depression-Filling and Watershed-Labeling Algorithm for Digital Elevation Models

Authors: Richard Barnes, Clarence Lehman, David Mulla

Corresponding Author: Richard Barnes (rbarnes@umn.edu)

DOI Number of Manuscript 10.1016/j.cageo.2013.04.024 [http://dx.doi.org/10.1016/j.cageo.2013.04.024]

Code Repositories
	Author’s GitHub Repository [https://github.com/r-barnes/Barnes2013-Depressions]

	Journal’s GitHub Repository [https://github.com/cageo]

This repository contains a reference implementation of the algorithms presented in the manuscript above. These implementations were used in performing the tests described in the manuscript.

There is source code for every pseudocode algorithm presented in the manuscript. All the code can be compiled simply by running make. The result is a program called priority_flood.exe.

This program reads in a DEM file specified on the command line. The file may be any ArcGrid ASCII file. The program will run one of the algorithms described in the manuscript (and below), store the result in an output file, and report how long this took.

The program is run by typing: ./priority_flood.exe <ALGORITHM NUMBER> <INPUT DEM>
./priority_flood.exe 3 input-data.asc

The algorithms available are described briefly below and in greater detail in the manuscript.

	Algorithm 1: Priority-Flood This algorithm alters the input DEM to produce an output with no depressions or digital dams. Every cell which would have been in a depression is increased to the level of that depression’s outlet, leaving a flat region in its place. It runs slower than Algorithm 2, but is otherwise the same. The result is saved to out-pf-original.

	Algorithm 2: Improved Priority-Flood This algorithm alters the input DEM to produce an output with no depressions or digital dams. Every cell which would have been in a depression is increased to the level of that depression’s outlet, leaving a flat region in its place. It runs faster than Algorithm 1, but is otherwise the same. The result is saved to out-pf-improved.

	Algorithm 3: Priority-Flood+Epsilon This algorithm alters the input DEM to produce an output with no depressions or digital dams. Every cell which would have been in a depression is increased to the level of that depression’s output, plus an additional increment which is sufficient to direct flow to the periphery of the DEM. The result is saved to out-pf-epsilon.

	Algorithm 4: Priority-Flood+FlowDirs This algorithm determines a D8 flow direction for every cell in the DEM by implicitly filling depressions and eliminating digital dams. Though all depressions are guaranteed to drain, local elevation information is still used to determine flow directions within a depression. It is, in essence, a depression-carving algorithm. The result is saved to out-pf-flowdirs.

	Algorithm 5: Priority-Flood+Watershed Labels For each cell c in a DEM, this algorithm determines which cell on the DEM’s periphery c will drain to. c is then given a label which corresponds to the peripheral cell. All cells bearing a common label belong to the same watershed. The result is saved to out-pf-wlabels.

Algorithm 4: Priority-Flood+FlowDirs and its output, out-pf-flowdirs, use the D8 neighbour system to indicate flow directions. In this system all the flow from a central cell is directed to a single neighbour which is represented by a number according to the following system where 0 indicates the central cell. 234
105
876

The directory src/ contains the source code for the reference implementations. All the source code is drawn from the RichDEM hydroanalysis package. At the time of writing, the entire RichDEM code base could be downloaded from: https://github.com/r-barnes

Assumptions

All of the algorithms assume that cells marked as having NoData will have extremely negative numerical values: less than the value of any of the actual data. NaN is considered to be less than all values, including negative infinity.

Notes on the Manuscript

Work by Cris Luengo on the speed of various priority queue algorithms is discussed in the manuscript. His website providing code for his implementatations is here [http://www.cb.uu.se/~cris/priorityqueues.html].

Updates

Commit 51f9a7838d3e88628ef6c74846edd0cb18e7ffe6 (02015-09-25) introduced a number of changes to the code versus what was originally published with the manuscript. The old codebase uses ASCII-formatted data for input and output; the new codebase uses GDAL to handle many kinds of data.

The old codebase had the advantage of not relying on external libraries and being readily accessible to all parties. It had the disadvantage of being a slow, clumsy, and limited way to work with the data. As of 02015-09-25, the code requires the use of the GDAL library greatly expanding the data formats and data types which can be worked with, as well as greatly speeding up I/O.

Note that using the aforementioned 51f9a7838d directly will result in silent casting of your data to the float type; commit 8b11f535af23368d3bd26609cc88df3dbb7111f1 (02015-09-28) fixes this issue.

Additionally, the library now uses C++ for all streaming operations except the progress bar.

	
page md__home_docs_checkouts_readthedocs.org_user_builds_richdem_checkouts_stable_include_richdem_flats_README

	Title of Manuscript: An Efficient Assignment of Drainage Direction Over Flat Surfaces in Raster Digital Elevation Models

Authors: Richard Barnes, Clarence Lehman, David Mulla

Corresponding Author: Richard Barnes (rbarnes@umn.edu)

DOI Number of Manuscript 10.1016/j.cageo.2013.01.009 [http://dx.doi.org/10.1016/j.cageo.2013.01.009]

Code Repositories
	Author’s GitHub Repository [https://github.com/r-barnes/Barnes2013-FlatSurfaces]

	Journal’s GitHub Repository [https://github.com/cageo]

This repository contains a reference implementation of the algorithms presented in the manuscript above. It also contains a reference implementation of the algorithm presented by Garbrecht and Martz (1997). These implementations were used in performing speed comparison tests in the manuscript.

All the programs can be produced simply by running make.

The program generate_square_grid.exe makes a square DEM with a single outlet near the bottom-left corner. The grid size is specified as a command-line argument.

The two reference implementations use the D8 neighbour system to indicate flow directions. In this system all the flow from a central cell is directed to a single neighbour which is represented by a number according to the following system where 0 indicates the central cell. 234
105
876

The program barnes_algorithm.exe reads in a DEM file specified on the command line. The file may be generated by generate_square_grid.exe, but may also be any ArcGrid ASCII file. The program will time itself and report the results back. The program will print the determined flow directions for the DEM to a file named out_barnes. The determined flow directions are also printed as a matrix of arrows to out_barnes_arrows.

The program garbrecht_algorithm.exe attempts to reproduce the algorithm described by Garbrecht and Martz (1997). It accepts an ArcGRID ASCII file as a command line input. The input file may also be generated with generate_square_grid.exe. Note that this implementation does not apply itself iteratively, meaning that some flats will be unresolvable. It writes the determined flow directions to out_garbrecht. The determined flow directions are also printed as a matrix of arrows to out_garbrecht_arrows.

The directory src/ contains the source code for reference implementations. The source for the improved algorithm is drawn from the RichDEM hydroanalysis package. All code can be compiled by running the makefile included in the root directory. Running the BASH script FIRST_RUN will compile everything and run the programs.

At the time of writing, the entire RichDEM code base could be downloaded from: https://github.com/r-barnes

	
page todo

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/richdem/checkouts/stable/include/richdem/common

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/richdem/checkouts/stable/include/richdem/depressions

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/richdem/checkouts/stable/include/richdem/flats

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/richdem/checkouts/stable/include/richdem/flowmet

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/richdem/checkouts/stable/include

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/richdem/checkouts/stable/include/richdem/methods

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/richdem/checkouts/stable/include/richdem/misc

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/richdem/checkouts/stable/include/richdem

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/richdem/checkouts/stable/include/richdem/tiled

	

RichDEM Python Reference

	
richdem.BreachDepressions(dem, in_place=False, topology='D8')

	Breaches all depressions in a DEM.

	Parameters

	
	dem (rdarray) – An elevation model

	in_place (bool) – If True, the DEM is modified in place and there is
no return; otherwise, a new, altered DEM is returned.

	topology (string) – A topology indicator

	Returns

	DEM without depressions.

	
richdem.FillDepressions(dem, epsilon=False, in_place=False, topology='D8')

	Fills all depressions in a DEM.

	Parameters

	
	dem (rdarray) – An elevation model

	epsilon (float) – If True, an epsilon gradient is imposed to all flat regions.
This ensures that there is always a local gradient.

	in_place (bool) – If True, the DEM is modified in place and there is
no return; otherwise, a new, altered DEM is returned.

	topology (string) – A topology indicator

	Returns

	DEM without depressions.

	
richdem.FlowAccumFromProps(props, weights=None, in_place=False)

	Calculates flow accumulation from flow proportions.

	Parameters

	
	props (rdarray) – An elevation model

	weights (rdarray) – Flow accumulation weights to use. This is the
amount of flow generated by each cell. If this is
not provided, each cell will generate 1 unit of
flow.

	in_place (bool) – If True, then weights is modified in place. An
accumulation matrix is always returned, but it will
just be a view of the modified data if in_place
is True.

	Returns

	A flow accumulation array. If weights was provided and in_place was
True, then this matrix is a view of the modified data.

	
richdem.FlowAccumulation(dem, method=None, exponent=None, weights=None, in_place=False)

	Calculates flow accumulation. A variety of methods are available.

	Parameters

	
	dem (rdarray) – An elevation model

	method (str) – Flow accumulation method to use. (See below.)

	exponent (float) – Some methods require an exponent; refer to the
relevant publications for details.

	weights (rdarray) – Flow accumulation weights to use. This is the
amount of flow generated by each cell. If this is
not provided, each cell will generate 1 unit of
flow.

	in_place (bool) – If True, then weights is modified in place. An
accumulation matrix is always returned, but it will
just be a view of the modified data if in_place
is True.

	Method

	Note

	Reference

	Tarboton

	Alias for Dinf.

	Taroboton (1997) doi: 10.1029/96WR03137 [http://dx.doi.org/10.1029/96WR03137]

	Dinf

	Alias for Tarboton.

	Taroboton (1997) doi: 10.1029/96WR03137 [http://dx.doi.org/10.1029/96WR03137]

	Quinn

	Holmgren with exponent=1.

	Quinn et al. (1991) doi: 10.1002/hyp.3360050106 [http://dx.doi.org/10.1002/hyp.3360050106]

	Holmgren(E)

	Generalization of Quinn.

	Holmgren (1994) doi: 10.1002/hyp.3360080405 [http://dx.doi.org/10.1002/hyp.3360080405]

	Freeman(E)

	TODO

	Freeman (1991) doi: 10.1016/0098-3004(91)90048-I [http://dx.doi.org/10.1016/0098-3004(91)90048-I]

	FairfieldLeymarieD8

	Alias for Rho8.

	Fairfield and Leymarie (1991) doi: 10.1029/90WR02658 [http://dx.doi.org/10.1029/90WR02658]

	FairfieldLeymarieD4

	Alias for Rho4.

	Fairfield and Leymarie (1991) doi: 10.1029/90WR02658 [http://dx.doi.org/10.1029/90WR02658]

	Rho8

	Alias for FairfieldLeymarieD8.

	Fairfield and Leymarie (1991) doi: 10.1029/90WR02658 [http://dx.doi.org/10.1029/90WR02658]

	Rho4

	Alias for FairfieldLeymarieD4.

	Fairfield and Leymarie (1991) doi: 10.1029/90WR02658 [http://dx.doi.org/10.1029/90WR02658]

	OCallaghanD8

	Alias for D8.

	O’Callaghan and Mark (1984) doi: 10.1016/S0734-189X(84)80011-0 [http://dx.doi.org/10.1016/S0734-189X(84)80011-0]

	OCallaghanD4

	Alias for D8.

	O’Callaghan and Mark (1984) doi: 10.1016/S0734-189X(84)80011-0 [http://dx.doi.org/10.1016/S0734-189X(84)80011-0]

	D8

	Alias for OCallaghanD8.

	O’Callaghan and Mark (1984) doi: 10.1016/S0734-189X(84)80011-0 [http://dx.doi.org/10.1016/S0734-189X(84)80011-0]

	D4

	Alias for OCallaghanD4.

	O’Callaghan and Mark (1984) doi: 10.1016/S0734-189X(84)80011-0 [http://dx.doi.org/10.1016/S0734-189X(84)80011-0]

Methods marked (E) require the exponent argument.

	Returns

	A flow accumulation according to the desired method. If weights was
provided and in_place was True, then this matrix is a view of the
modified data.

	
richdem.FlowProportions(dem, method=None, exponent=None)

	Calculates flow proportions. A variety of methods are available.

	Parameters

	
	dem (rdarray) – An elevation model

	method (str) – Flow accumulation method to use. (See below.)

	exponent (float) – Some methods require an exponent; refer to the
relevant publications for details.

	Method

	Note

	Reference

	Tarboton

	Alias for Dinf.

	Taroboton (1997) doi: 10.1029/96WR03137 [http://dx.doi.org/10.1029/96WR03137]

	Dinf

	Alias for Tarboton.

	Taroboton (1997) doi: 10.1029/96WR03137 [http://dx.doi.org/10.1029/96WR03137]

	Quinn

	Holmgren with exponent=1.

	Quinn et al. (1991) doi: 10.1002/hyp.3360050106 [http://dx.doi.org/10.1002/hyp.3360050106]

	Holmgren(E)

	Generalization of Quinn.

	Holmgren (1994) doi: 10.1002/hyp.3360080405 [http://dx.doi.org/10.1002/hyp.3360080405]

	Freeman(E)

	TODO

	Freeman (1991) doi: 10.1016/0098-3004(91)90048-I [http://dx.doi.org/10.1016/0098-3004(91)90048-I]

	FairfieldLeymarieD8

	Alias for Rho8.

	Fairfield and Leymarie (1991) doi: 10.1029/90WR02658 [http://dx.doi.org/10.1029/90WR02658]

	FairfieldLeymarieD4

	Alias for Rho4.

	Fairfield and Leymarie (1991) doi: 10.1029/90WR02658 [http://dx.doi.org/10.1029/90WR02658]

	Rho8

	Alias for FairfieldLeymarieD8.

	Fairfield and Leymarie (1991) doi: 10.1029/90WR02658 [http://dx.doi.org/10.1029/90WR02658]

	Rho4

	Alias for FairfieldLeymarieD4.

	Fairfield and Leymarie (1991) doi: 10.1029/90WR02658 [http://dx.doi.org/10.1029/90WR02658]

	OCallaghanD8

	Alias for D8.

	O’Callaghan and Mark (1984) doi: 10.1016/S0734-189X(84)80011-0 [http://dx.doi.org/10.1016/S0734-189X(84)80011-0]

	OCallaghanD4

	Alias for D8.

	O’Callaghan and Mark (1984) doi: 10.1016/S0734-189X(84)80011-0 [http://dx.doi.org/10.1016/S0734-189X(84)80011-0]

	D8

	Alias for OCallaghanD8.

	O’Callaghan and Mark (1984) doi: 10.1016/S0734-189X(84)80011-0 [http://dx.doi.org/10.1016/S0734-189X(84)80011-0]

	D4

	Alias for OCallaghanD4.

	O’Callaghan and Mark (1984) doi: 10.1016/S0734-189X(84)80011-0 [http://dx.doi.org/10.1016/S0734-189X(84)80011-0]

Methods marked (E) require the exponent argument.

	Returns

	A flow proportion according to the desired method.

	
richdem.LoadGDAL(filename, no_data=None)

	Read a GDAL file.

Opens any file GDAL can read, selects the first raster band, and loads it
and its metadata into a RichDEM array of the appropriate data type.

If you need to do something more complicated, look at the source of this
function.

	Parameters

	
	filename (str) – Name of the raster file to open

	no_data (float) – Optionally, set the no_data value to this.

	Returns

	A RichDEM array

	
richdem.ResolveFlats(dem, in_place=False)

	Attempts to resolve flats by imposing a local gradient

	Parameters

	
	dem (rdarray) – An elevation model

	in_place (bool) – If True, the DEM is modified in place and there is
no return; otherwise, a new, altered DEM is returned.

	Returns

	DEM modified such that all flats drain.

	
richdem.SaveGDAL(filename, rda)

	Save a GDAL file.

Saves a RichDEM array to a data file in GeoTIFF format.

If you need to do something more complicated, look at the source of this
function.

	Parameters

	
	filename (str) – Name of the raster file to be created

	rda (rdarray) – Data to save.

	Returns

	No Return

	
richdem.TerrainAttribute(dem, attrib, zscale=1.0)

	Calculates terrain attributes. A variety of methods are available.

	Parameters

	
	dem (rdarray) – An elevation model

	attrib (str) – Terrain attribute to calculate. (See below.)

	zscale (float) – How much to scale the z-axis by prior to calculation

	Method

	Reference

	slope_riserun

	Horn (1981) doi: 10.1109/PROC.1981.11918 [http://dx.doi.org/10.1109/PROC.1981.11918]

	slope_percentage

	Horn (1981) doi: 10.1109/PROC.1981.11918 [http://dx.doi.org/10.1109/PROC.1981.11918]

	slope_degrees

	Horn (1981) doi: 10.1109/PROC.1981.11918 [http://dx.doi.org/10.1109/PROC.1981.11918]

	slope_radians

	Horn (1981) doi: 10.1109/PROC.1981.11918 [http://dx.doi.org/10.1109/PROC.1981.11918]

	aspect

	Horn (1981) doi: 10.1109/PROC.1981.11918 [http://dx.doi.org/10.1109/PROC.1981.11918]

	curvature

	Zevenbergen and Thorne (1987) doi: 10.1002/esp.3290120107 [http://dx.doi.org/10.1002/esp.3290120107]

	planform_curvature

	Zevenbergen and Thorne (1987) doi: 10.1002/esp.3290120107 [http://dx.doi.org/10.1002/esp.3290120107]

	profile_curvature

	Zevenbergen and Thorne (1987) doi: 10.1002/esp.3290120107 [http://dx.doi.org/10.1002/esp.3290120107]

	Returns

	A raster of the indicated terrain attributes.

	
class richdem.rd3array

	

	
class richdem.rdarray

	

Testing Methodology

Simple algorithms are shown to be correct through visual inspection and
comparison against hand-crafted examples. Correctness for more complex
algorithms is often “boot-strapped” by comparing the results of simple
algorithms versus the complex algorithms on a large number of randomly-generated
datasets.

This is a work in progress. TODO

Correctness

Correctness is established via a number of methodologies building from code
inspection in the simplest cases to output comparison between simple and complex
implementations.

Correctness is noted in source code comments under @correctness sections.
These are, in turn, printed to the Doxygen documentation output.

A master list of how correctness was established for each algorithm is available
at tests/README.md.

Specific Algorithms

Many of the algorithms used in RichDEM are documented in journal or conference
publications. In the case of older algorithms by other authors, it is often
possible to find the paper in the literature. Some of the newer algorithms I
developed have not yet had a chance to be widely utilized. These algorithms are
listed below.

Additionally, each publication has its own GitHub repository featuring
easily-compiled, minimum working examples of the algorithms, along with examples
and test data sets.

These are available as follows:

	Flat-resolution algorithm. Link [https://github.com/r-barnes/Barnes2013-FlatSurfaces]

	Depression-filling algorithm. Link [https://github.com/r-barnes/Barnes2013-Depressions]

	Large dataset depression-filling algorithm. Link [https://github.com/r-barnes/Barnes2016-ParallelPriorityFlood]

	Large dataset flow accumulation algorithm. Link [https://github.com/r-barnes/Barnes2016-ParallelFlowAccum]

Publications

The algorithms used in RichDEM have been published in the following articles. Every algorithm/program will provide its relevant citation information when run.

	Barnes, R., 2017. Parallel non-divergent flow accumulation for trillion cell digital elevation models on desktops or clusters. Environmental Modelling & Software 92, 202–212. doi: 10.1016/j.envsoft.2017.02.022 [https://doi.org/10.1016/j.envsoft.2017.02.022]

	Barnes, R., 2016. Parallel priority-flood depression filling for trillion cell digital elevation models on desktops or clusters. Computers & Geosciences 96, 56–68. doi: 10.1016/j.cageo.2016.07.001 [https://doi.org/10.1016/j.cageo.2016.07.001]

	Barnes, R., Lehman, C., Mulla, D., 2014a. An efficient assignment of drainage direction over flat surfaces in raster digital elevation models. Computers & Geosciences 62, 128–135. doi: 10.1016/j.cageo.2013.01.009 [https://doi.org/10.1016/j.cageo.2013.01.009]

	Barnes, R., Lehman, C., Mulla, D., 2014b. Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation models. Computers & Geosciences 62, 117–127. doi: 10.1016/j.cageo.2013.04.024 [https://doi.org/10.1016/j.cageo.2013.04.024]

	Barnes, Lehman, Mulla. 2011. “Distributed Parallel D8 Up-Slope Area Calculation in Digital Elevation Models”. Intn’l Conf. on Parallel & Distributed Processing Techniques & Applications. Link [http://rbarnes.org/section/sci/2011_barnes_distributed.pdf]

	Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE 69, 14–47. doi: 10.1109/PROC.1981.11918 [http://dx.doi.org/10.1109/PROC.1981.11918]

	Mulla et al. including Barnes. 2012. “Strategic Planning for Minnesota’s Natural and Artificial Watersheds”. Report to the Minnesota LCCMR.

	Tarboton, D.G. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research. Vol. 33. pp 309-319.

	Zevenbergen, L.W., Thorne, C.R., 1987. Quantitative analysis of land surface topography. Earth surface processes and landforms 12, 47–56.

	Zhou, G., Sun, Z., Fu, S., 2016. An efficient variant of the Priority-Flood algorithm for filling depressions in raster digital elevation models. Computers & Geosciences 90, Part A, 87 – 96. doi: 10.1016/j.cageo.2016.02.021 [http://dx.doi.org/10.1016/j.cageo.2016.02.021]

Sponsors

RichDEM has been developed and tested using computational resources provided by
the Minnesota Supercomputing Institute [https://www.msi.umn.edu/] (MSI) and the
U.S. National Science Foundation’s XSEDE [https://www.xsede.org/].

Funding for the development of RichDEM has been provided by the Legislative-Citizen Commission on Minnesota Resources [http://www.lccmr.leg.mn/] (LCCMR), the U.S. National Science
Foundation Graduate Research Fellowship [https://www.nsfgrfp.org/], and the U.S. Department of Energy
Computational Science Graduate Fellowship [https://www.krellinst.org/csgf/].

Feedback

If you see something, say something.

Users are encouraged to report any issues experienced with the code via Github’s
issue tracker. Feedback is also accepted via email (rbarnes@umn.edu), though
this is highly discouraged as it does not provide a resource for others.

Release Steps

Updating Documentation

	Enter the docs directory.

	Run make html

	Enter the docs/richdem-docs directory. Commit changes.

	Go back to the docs directory. Commit changes.

	Push.

	This will trigger a ReadTheDocs build and a Travis build.

Updating Wheels

Acquire the manylinux build image with:

docker pull quay.io/pypa/manylinux1_x86_64

Start the docker manylinux build image with:

docker run -i -t e0e55980c200 /bin/bash

You can list running images with:

docker ps

From within the container run the travis/build-wheels.sh script to generate
documentation.

From without the container run, e.g.:

docker cp mystifying_darwin:/io/wheelhouse/richdem-0.0.9-cp27-cp27m-linux_x86_64.whl ./

Upload the wheel to PyPI with

twine upload richdem-0.0.9-cp*

Updating Source Dist

To generate a source distribution, run

python3 setup.py sdist

Upload it to PyPI with, e.g.

twine upload dist/richdem-0.0.10.tar.gz

 Python Module Index

 r

 		 	

 		
 r	

 	
 	
 richdem	

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | X
 | Y

_

 	
 	_unused (C macro), [1]

B

 	
 	BreachDepressions() (in module richdem)

 	
 	bytes_recv (C++ member)

 	bytes_sent (C++ member)

C

 	
 	CELL_COUNT (C++ enumerator)

 	comm_count_type (C++ type)

 	CommAbort (C++ function), [1]

 	CommBarrier (C++ function)

 	CommBroadcast (C++ function), [1]

 	CommBytesRecv (C++ function), [1]

 	CommBytesReset (C++ function), [1]

 	CommBytesSent (C++ function), [1]

 	CommFinalize (C++ function), [1]

 	
 	CommGetSource (C++ function)

 	CommGetTag (C++ function), [1]

 	CommInit (C++ function), [1]

 	CommISend (C++ function)

 	CommPrepare (C++ function), [1]

 	CommRank (C++ function), [1]

 	CommRecv (C++ function), [1], [2], [3]

 	CommSend (C++ function), [1], [2], [3]

 	CommSize (C++ function), [1]

D

 	
 	dem_surface_area (C++ function)

 	
 	dinf_NO_DATA (C macro)

E

 	
 	EDGE_GRID (C macro)

 	
 	elevations (C++ member)

F

 	
 	FillDepressions() (in module richdem)

 	FLAT_NO_DATA (C macro)

 	
 	FlowAccumFromProps() (in module richdem)

 	FlowAccumulation() (in module richdem)

 	FlowProportions() (in module richdem)

G

 	
 	GenerateDEM (C++ function)

I

 	
 	IN_GRID (C macro)

 	
 	IS_A_FLAT (C macro)

L

 	
 	LoadGDAL() (in module richdem)

M

 	
 	main (C++ function), [1], [2]

 	
 	msg_type (C++ type)

N

 	
 	NOT_A_FLAT (C macro)

O

 	
 	omp_get_max_threads (C macro)

 	
 	omp_get_num_threads (C macro), [1]

 	omp_get_thread_num (C macro), [1]

P

 	
 	PerformAlgorithm (C++ function), [1]

 	Perimeter (C++ function)

 	
 	PerimType (C++ type)

 	PrintDEM (C++ function)

 	PRNG_THREAD_MAX (C macro)

R

 	
 	rd3array (class in richdem)

 	rdarray (class in richdem)

 	RDLOG (C macro)

 	RDLOG_ALG_NAME (C macro)

 	RDLOG_CITATION (C macro)

 	RDLOG_CONFIG (C macro)

 	RDLOG_DEBUG (C macro)

 	RDLOG_ERROR (C macro)

 	RDLOG_MEM_USE (C macro)

 	RDLOG_MISC (C macro)

 	RDLOG_PROGRESS (C macro)

 	RDLOG_TIME_USE (C macro)

 	RDLOG_WARN (C macro)

 	ResolveFlats() (in module richdem)

 	richdem (C++ type)

 	(module)

 	richdem::A2Array2D (C++ class)

 	richdem::A2Array2D::_LoadTile (C++ function)

 	richdem::A2Array2D::A2Array2D (C++ function), [1], [2]

 	richdem::A2Array2D::cells_in_not_null_tiles (C++ member)

 	richdem::A2Array2D::data (C++ member)

 	richdem::A2Array2D::evictions (C++ member)

 	richdem::A2Array2D::flipH (C++ member)

 	richdem::A2Array2D::flipV (C++ member)

 	richdem::A2Array2D::getEvictions (C++ function)

 	richdem::A2Array2D::height (C++ function)

 	richdem::A2Array2D::heightInTiles (C++ function)

 	richdem::A2Array2D::in_grid (C++ function)

 	richdem::A2Array2D::isEdgeCell (C++ function)

 	richdem::A2Array2D::isInteriorCell (C++ function)

 	richdem::A2Array2D::isNoData (C++ function), [1]

 	richdem::A2Array2D::isNullTile (C++ function)

 	richdem::A2Array2D::isReadonly (C++ function)

 	richdem::A2Array2D::loadTile (C++ function)

 	richdem::A2Array2D::lru (C++ member)

 	richdem::A2Array2D::makeQuadIndex (C++ function)

 	richdem::A2Array2D::myGDALType (C++ function)

 	richdem::A2Array2D::no_data_to_set (C++ member)

 	richdem::A2Array2D::not_null_tiles (C++ member)

 	richdem::A2Array2D::notNullTiles (C++ function)

 	richdem::A2Array2D::null_tile_quick (C++ member)

 	richdem::A2Array2D::operator() (C++ function), [1]

 	richdem::A2Array2D::per_tile_height (C++ member)

 	richdem::A2Array2D::per_tile_width (C++ member)

 	richdem::A2Array2D::printStamp (C++ function)

 	richdem::A2Array2D::quick_height_in_tiles (C++ member)

 	richdem::A2Array2D::quick_width_in_tiles (C++ member)

 	richdem::A2Array2D::readonly (C++ member)

 	richdem::A2Array2D::saveGDAL (C++ function)

 	richdem::A2Array2D::saveUnifiedGDAL (C++ function)

 	richdem::A2Array2D::setAll (C++ function)

 	richdem::A2Array2D::setNoData (C++ function)

 	richdem::A2Array2D::stdTileHeight (C++ function)

 	richdem::A2Array2D::stdTileWidth (C++ function)

 	richdem::A2Array2D::tileHeight (C++ function)

 	richdem::A2Array2D::tileWidth (C++ function)

 	richdem::A2Array2D::total_height_in_cells (C++ member)

 	richdem::A2Array2D::total_width_in_cells (C++ member)

 	richdem::A2Array2D::width (C++ function)

 	richdem::A2Array2D::widthInTiles (C++ function)

 	richdem::A2Array2D::WrappedArray2D (C++ class)

 	richdem::A2Array2D<T>::WrappedArray2D::create_with_height (C++ member)

 	richdem::A2Array2D<T>::WrappedArray2D::create_with_width (C++ member)

 	richdem::A2Array2D<T>::WrappedArray2D::created (C++ member)

 	richdem::A2Array2D<T>::WrappedArray2D::do_set_all (C++ member)

 	richdem::A2Array2D<T>::WrappedArray2D::lazySetAll (C++ function)

 	richdem::A2Array2D<T>::WrappedArray2D::loaded (C++ member)

 	richdem::A2Array2D<T>::WrappedArray2D::null_tile (C++ member)

 	richdem::A2Array2D<T>::WrappedArray2D::set_all_val (C++ member)

 	richdem::ac (C++ member)

 	richdem::ACCUM_NO_DATA (C++ member)

 	richdem::af (C++ member)

 	richdem::ALG_NAME (C++ enumerator)

 	richdem::area_proportion (C++ function)

 	richdem::Array2D (C++ class)

 	richdem::Array2D::_nshift (C++ member)

 	richdem::Array2D::Array2D (C++ function), [1], [2], [3], [4], [5], [6]

 	richdem::Array2D::basename (C++ member)

 	richdem::Array2D::bottomRow (C++ function)

 	richdem::Array2D::clear (C++ function)

 	richdem::Array2D::countDataCells (C++ function)

 	richdem::Array2D::countval (C++ function)

 	richdem::Array2D::data (C++ member)

 	richdem::Array2D::dumpData (C++ function)

 	richdem::Array2D::empty (C++ function)

 	richdem::Array2D::expand (C++ function)

 	richdem::Array2D::filename (C++ member)

 	richdem::Array2D::flipHorz (C++ function)

 	richdem::Array2D::flipVert (C++ function)

 	richdem::Array2D::from_cache (C++ member)

 	richdem::Array2D::geotransform (C++ member)

 	richdem::Array2D::getCellArea (C++ function)

 	richdem::Array2D::getCellLengthX (C++ function)

 	richdem::Array2D::getCellLengthY (C++ function)

 	richdem::Array2D::getColData (C++ function)

 	richdem::Array2D::getData (C++ function)

 	richdem::Array2D::getN (C++ function)

 	richdem::Array2D::getRowData (C++ function)

 	richdem::Array2D::height (C++ function)

 	richdem::Array2D::i0 (C++ function)

 	richdem::Array2D::i_t (C++ type)

 	richdem::Array2D::inGrid (C++ function)

 	richdem::Array2D::isBottomLeft (C++ function)

 	richdem::Array2D::isBottomRight (C++ function)

 	richdem::Array2D::isBottomRow (C++ function)

 	richdem::Array2D::isEdgeCell (C++ function), [1]

 	richdem::Array2D::isLeftCol (C++ function)

 	richdem::Array2D::isNoData (C++ function), [1]

 	richdem::Array2D::isRightCol (C++ function)

 	richdem::Array2D::isTopLeft (C++ function)

 	richdem::Array2D::isTopRight (C++ function)

 	richdem::Array2D::isTopRow (C++ function)

 	richdem::Array2D::iToxy (C++ function)

 	richdem::Array2D::leftColumn (C++ function)

 	richdem::Array2D::loadData (C++ function)

 	richdem::Array2D::loadNative (C++ function)

 	richdem::Array2D::max (C++ function)

 	richdem::Array2D::metadata (C++ member)

 	richdem::Array2D::min (C++ function)

 	richdem::Array2D::no_data (C++ member)

 	richdem::Array2D::NO_I (C++ member)

 	richdem::Array2D::noData (C++ function)

 	richdem::Array2D::nshift (C++ function)

 	richdem::Array2D::nToI (C++ function)

 	richdem::Array2D::num_data_cells (C++ member)

 	richdem::Array2D::numDataCells (C++ function)

 	richdem::Array2D::operator() (C++ function), [1], [2], [3]

 	richdem::Array2D::operator== (C++ function)

 	richdem::Array2D::owned (C++ function)

 	richdem::Array2D::printAll (C++ function)

 	richdem::Array2D::printBlock (C++ function)

 	richdem::Array2D::printStamp (C++ function)

 	richdem::Array2D::projection (C++ member)

 	richdem::Array2D::replace (C++ function)

 	richdem::Array2D::resize (C++ function), [1]

 	richdem::Array2D::rightColumn (C++ function)

 	richdem::Array2D::saveToCache (C++ function)

 	richdem::Array2D::scale (C++ function)

 	richdem::Array2D::setAll (C++ function)

 	richdem::Array2D::setCacheFilename (C++ function)

 	richdem::Array2D::setCol (C++ function)

 	richdem::Array2D::setNoData (C++ function)

 	richdem::Array2D::setRow (C++ function)

 	richdem::Array2D::size (C++ function)

 	richdem::Array2D::templateCopy (C++ function)

 	richdem::Array2D::topRow (C++ function)

 	richdem::Array2D::transpose (C++ function)

 	richdem::Array2D::view_height (C++ member)

 	richdem::Array2D::view_width (C++ member)

 	richdem::Array2D::view_xoff (C++ member)

 	richdem::Array2D::view_yoff (C++ member)

 	richdem::Array2D::viewXoff (C++ function)

 	richdem::Array2D::viewYoff (C++ function)

 	richdem::Array2D::width (C++ function)

 	richdem::Array2D::xy_t (C++ type)

 	richdem::Array2D::xyToI (C++ function)

 	richdem::Array3D (C++ class)

 	richdem::Array3D::Array3D (C++ function), [1], [2], [3], [4]

 	richdem::Array3D::basename (C++ member)

 	richdem::Array3D::clear (C++ function)

 	richdem::Array3D::countDataCells (C++ function)

 	richdem::Array3D::data (C++ member)

 	richdem::Array3D::empty (C++ function)

 	richdem::Array3D::filename (C++ member)

 	richdem::Array3D::geotransform (C++ member)

 	richdem::Array3D::getData (C++ function)

 	richdem::Array3D::getIN (C++ function), [1]

 	richdem::Array3D::height (C++ function)

 	richdem::Array3D::i0 (C++ function)

 	richdem::Array3D::i_t (C++ type)

 	richdem::Array3D::inGrid (C++ function)

 	richdem::Array3D::isNoData (C++ function), [1]

 	richdem::Array3D::metadata (C++ member)

 	richdem::Array3D::n_t (C++ type)

 	richdem::Array3D::no_data (C++ member)

 	richdem::Array3D::NO_I (C++ member)

 	richdem::Array3D::noData (C++ function)

 	richdem::Array3D::num_data_cells (C++ member)

 	richdem::Array3D::numDataCells (C++ function)

 	richdem::Array3D::operator() (C++ function), [1]

 	richdem::Array3D::operator== (C++ function)

 	richdem::Array3D::owned (C++ function)

 	richdem::Array3D::projection (C++ member)

 	richdem::Array3D::resize (C++ function), [1]

 	richdem::Array3D::setAll (C++ function)

 	richdem::Array3D::setNoData (C++ function)

 	richdem::Array3D::size (C++ function)

 	richdem::Array3D::view_height (C++ member)

 	richdem::Array3D::view_width (C++ member)

 	richdem::Array3D::view_xoff (C++ member)

 	richdem::Array3D::view_yoff (C++ member)

 	richdem::Array3D::viewXoff (C++ function)

 	richdem::Array3D::viewYoff (C++ function)

 	richdem::Array3D::width (C++ function)

 	richdem::Array3D::xy_t (C++ type)

 	richdem::Array3D::xyToI (C++ function)

 	richdem::author_name (C++ member)

 	richdem::barnes_flat_resolution_d8 (C++ function)

 	richdem::BreachDepressions (C++ function)

 	richdem::BuildAwayGradient (C++ function), [1]

 	richdem::BuildTowardsCombinedGradient (C++ function), [1]

 	richdem::CITATION (C++ enumerator)

 	richdem::CombineGradients (C++ function)

 	richdem::compilation_datetime (C++ member)

 	richdem::COMPLETE_BREACHING (C++ enumerator)

 	richdem::CompleteBreaching_Lindsay2016 (C++ function)

 	richdem::CONFIG (C++ enumerator)

 	richdem::CONSTRAINED_BREACHING (C++ enumerator)

 	richdem::copyright (C++ member)

 	richdem::D4 (C++ enumerator)

 	richdem::D4_EAST (C++ member)

 	richdem::D4_NORTH (C++ member)

 	richdem::D4_SOUTH (C++ member)

 	richdem::D4_WEST (C++ member)

 	richdem::d4x (C++ member)

 	richdem::d4y (C++ member)

 	richdem::D8 (C++ enumerator)

 	richdem::d8_arcgis (C++ member)

 	richdem::D8_EAST (C++ member)

 	richdem::d8_flats_alter_dem (C++ function)

 	richdem::d8_flow_accum (C++ function)

 	richdem::d8_flow_directions (C++ function)

 	richdem::d8_flow_flats (C++ function)

 	richdem::d8_FlowDir (C++ function)

 	richdem::d8_flowdir_t (C++ type)

 	richdem::d8_inverse (C++ member)

 	richdem::d8_masked_FlowDir (C++ function)

 	richdem::D8_NORTH (C++ member)

 	richdem::D8_SOUTH (C++ member)

 	richdem::d8_to_dinf (C++ member)

 	richdem::d8_upslope_cells (C++ function)

 	richdem::D8_WEST (C++ member)

 	richdem::d8x (C++ member)

 	richdem::d8y (C++ member)

 	richdem::DEBUG (C++ enumerator)

 	richdem::dinf_dx (C++ member)

 	richdem::dinf_dy (C++ member)

 	richdem::dinf_flow_directions (C++ function)

 	richdem::dinf_flow_flats (C++ function)

 	richdem::dinf_FlowDir (C++ function)

 	richdem::dinf_masked_FlowDir (C++ function)

 	richdem::dinf_upslope_area (C++ function)

 	richdem::dr (C++ member)

 	richdem::dx (C++ member)

 	richdem::dx_e1 (C++ member)

 	richdem::dx_e2 (C++ member)

 	richdem::dy (C++ member)

 	richdem::dy_e1 (C++ member)

 	richdem::dy_e2 (C++ member)

 	richdem::EDGE (C++ enumerator)

 	richdem::ERROR (C++ enumerator)

 	richdem::FA_D4 (C++ function)

 	richdem::FA_D8 (C++ function)

 	richdem::FA_Dinfinity (C++ function)

 	richdem::FA_FairfieldLeymarieD4 (C++ function)

 	richdem::FA_FairfieldLeymarieD8 (C++ function)

 	richdem::FA_Freeman (C++ function)

 	richdem::FA_Holmgren (C++ function)

 	
 	richdem::FA_OCallaghanD4 (C++ function)

 	richdem::FA_OCallaghanD8 (C++ function)

 	richdem::FA_Quinn (C++ function)

 	richdem::FA_Rho4 (C++ function)

 	richdem::FA_Rho8 (C++ function)

 	richdem::FA_Tarboton (C++ function)

 	richdem::FillDepressions (C++ function)

 	richdem::FillDepressionsEpsilon (C++ function)

 	richdem::find_flat_edges (C++ function)

 	richdem::FindFlatEdges (C++ function)

 	richdem::FindFlats (C++ function), [1]

 	richdem::flat_type (C++ type)

 	richdem::FlowAccumulation (C++ function)

 	richdem::FLOWDIR_NO_DATA (C++ member)

 	richdem::FM_D4 (C++ function)

 	richdem::FM_D8 (C++ function)

 	richdem::FM_Dinfinity (C++ function)

 	richdem::FM_FairfieldLeymarie (C++ function)

 	richdem::FM_Freeman (C++ function)

 	richdem::FM_Holmgren (C++ function)

 	richdem::FM_OCallaghan (C++ function)

 	richdem::FM_Quinn (C++ function)

 	richdem::FM_Rho4 (C++ function)

 	richdem::FM_Rho8 (C++ function)

 	richdem::FM_Tarboton (C++ function)

 	richdem::GarbrechtAlg (C++ function)

 	richdem::GetBaseName (C++ function)

 	richdem::GetFlatMask (C++ function)

 	richdem::git_hash (C++ member)

 	richdem::GradientAwayFromHigher (C++ function)

 	richdem::GradientTowardsLower (C++ function)

 	richdem::GRID_BOTTOM (C++ member)

 	richdem::GRID_LEFT (C++ member)

 	richdem::GRID_RIGHT (C++ member)

 	richdem::GRID_TOP (C++ member)

 	richdem::GridCell (C++ class)

 	richdem::GridCell::GridCell (C++ function), [1]

 	richdem::GridCell::x (C++ member)

 	richdem::GridCell::y (C++ member)

 	richdem::GridCellZ (C++ class)

 	richdem::GridCellZ::GridCellZ (C++ function), [1], [2], [3], [4], [5]

 	richdem::GridCellZ::isnan (C++ function), [1], [2]

 	richdem::GridCellZ::operator!= (C++ function), [1]

 	richdem::GridCellZ::operator< (C++ function), [1]

 	richdem::GridCellZ::operator<= (C++ function), [1]

 	richdem::GridCellZ::operator== (C++ function), [1]

 	richdem::GridCellZ::operator> (C++ function), [1], [2]

 	richdem::GridCellZ::operator>= (C++ function), [1]

 	richdem::GridCellZ::z (C++ member), [1], [2]

 	richdem::GridCellZ<double> (C++ class)

 	richdem::GridCellZ<float> (C++ class)

 	richdem::GridCellZk (C++ class)

 	richdem::GridCellZk::GridCellZk (C++ function), [1]

 	richdem::GridCellZk::k (C++ member)

 	richdem::GridCellZk::operator< (C++ function)

 	richdem::GridCellZk::operator> (C++ function)

 	richdem::GridCellZk_pq (C++ class)

 	richdem::GridCellZk_pq::count (C++ member)

 	richdem::GridCellZk_pq::emplace (C++ function)

 	richdem::GridCellZk_pq::push (C++ function)

 	richdem::HAS_FLOW_GEN (C++ member)

 	richdem::HasDepressions (C++ function)

 	richdem::InitPriorityQue (C++ function)

 	richdem::label_t (C++ type)

 	richdem::label_this (C++ function)

 	richdem::LabelFlat (C++ function)

 	richdem::LayoutfileReader (C++ class)

 	richdem::LayoutfileReader::basename (C++ member)

 	richdem::LayoutfileReader::fgrid (C++ member)

 	richdem::LayoutfileReader::filename (C++ member)

 	richdem::LayoutfileReader::getBasename (C++ function)

 	richdem::LayoutfileReader::getFilename (C++ function)

 	richdem::LayoutfileReader::getFullPath (C++ function)

 	richdem::LayoutfileReader::getGridLocName (C++ function)

 	richdem::LayoutfileReader::getPath (C++ function)

 	richdem::LayoutfileReader::getX (C++ function)

 	richdem::LayoutfileReader::getY (C++ function)

 	richdem::LayoutfileReader::gridx (C++ member)

 	richdem::LayoutfileReader::gridy (C++ member)

 	richdem::LayoutfileReader::isNullTile (C++ function)

 	richdem::LayoutfileReader::LayoutfileReader (C++ function)

 	richdem::LayoutfileReader::new_row (C++ member)

 	richdem::LayoutfileReader::newRow (C++ function)

 	richdem::LayoutfileReader::next (C++ function)

 	richdem::LayoutfileReader::path (C++ member)

 	richdem::LayoutfileWriter (C++ class)

 	richdem::LayoutfileWriter::addEntry (C++ function)

 	richdem::LayoutfileWriter::addRow (C++ function)

 	richdem::LayoutfileWriter::flout (C++ member)

 	richdem::LayoutfileWriter::gridx (C++ member)

 	richdem::LayoutfileWriter::gridy (C++ member)

 	richdem::LayoutfileWriter::LayoutfileWriter (C++ function)

 	richdem::LayoutfileWriter::path (C++ member)

 	richdem::LayoutfileWriter::~LayoutfileWriter (C++ function)

 	richdem::Lindsay2016 (C++ function), [1], [2], [3]

 	richdem::LindsayCellType (C++ type)

 	richdem::LindsayMode (C++ type)

 	richdem::log_flag_chars_begin (C++ member)

 	richdem::log_flag_chars_end (C++ member)

 	richdem::LogFlag (C++ type)

 	richdem::LRU (C++ class)

 	richdem::LRU::back (C++ function)

 	richdem::LRU::cache (C++ member)

 	richdem::LRU::cachetype (C++ type)

 	richdem::LRU::full (C++ function)

 	richdem::LRU::getCapacity (C++ function)

 	richdem::LRU::insert (C++ function)

 	richdem::LRU::last (C++ member)

 	richdem::LRU::len (C++ member)

 	richdem::LRU::LRU (C++ function)

 	richdem::LRU::maxlen (C++ member)

 	richdem::LRU::pop_back (C++ function)

 	richdem::LRU::prune (C++ function)

 	richdem::LRU::setCapacity (C++ function)

 	richdem::LRU::size (C++ function)

 	richdem::LRU::visited (C++ member)

 	richdem::ManagedVector (C++ class)

 	richdem::ManagedVector::_data (C++ member)

 	richdem::ManagedVector::_owned (C++ member)

 	richdem::ManagedVector::_size (C++ member)

 	richdem::ManagedVector::data (C++ function), [1]

 	richdem::ManagedVector::empty (C++ function)

 	richdem::ManagedVector::ManagedVector (C++ function), [1], [2], [3], [4], [5]

 	richdem::ManagedVector::operator= (C++ function), [1]

 	richdem::ManagedVector::operator[] (C++ function), [1]

 	richdem::ManagedVector::owned (C++ function)

 	richdem::ManagedVector::resize (C++ function)

 	richdem::ManagedVector::size (C++ function)

 	richdem::ManagedVector::~ManagedVector (C++ function)

 	richdem::MEM_USE (C++ enumerator)

 	richdem::MISC (C++ enumerator)

 	richdem::n_diag (C++ member)

 	richdem::NO_DATA_GEN (C++ member)

 	richdem::NO_FLOW (C++ member)

 	richdem::NO_FLOW_GEN (C++ member)

 	richdem::normal_rand (C++ function)

 	richdem::our_random_engine (C++ type)

 	richdem::peekLayoutTileSize (C++ function)

 	richdem::peekLayoutType (C++ function)

 	richdem::pit_mask (C++ function)

 	richdem::PrintRichdemHeader (C++ function)

 	richdem::PriorityFlood_Barnes2014 (C++ function)

 	richdem::PriorityFlood_Barnes2014_max_dep (C++ function)

 	richdem::PriorityFlood_Original (C++ function)

 	richdem::PriorityFlood_Wei2018 (C++ function)

 	richdem::PriorityFlood_Zhou2016 (C++ function)

 	richdem::PriorityFloodEpsilon_Barnes2014 (C++ function), [1], [2], [3], [4], [5]

 	richdem::PriorityFloodFlowdirs_Barnes2014 (C++ function)

 	richdem::PriorityFloodWatersheds_Barnes2014 (C++ function)

 	richdem::ProcessMemUsage (C++ function)

 	richdem::ProcessMetadata (C++ function)

 	richdem::ProcessPit (C++ function)

 	richdem::ProcessPit_onepass (C++ function)

 	richdem::ProcessTraceQue (C++ function)

 	richdem::ProcessTraceQue_onepass (C++ function)

 	richdem::program_identifier (C++ member)

 	richdem::program_name (C++ member)

 	richdem::PROGRESS (C++ enumerator)

 	richdem::ProgressBar (C++ class)

 	richdem::ProgressBar::call_diff (C++ member)

 	richdem::ProgressBar::cellsProcessed (C++ function)

 	richdem::ProgressBar::clearConsoleLine (C++ function)

 	richdem::ProgressBar::next_update (C++ member)

 	richdem::ProgressBar::old_percent (C++ member)

 	richdem::ProgressBar::operator++ (C++ function)

 	richdem::ProgressBar::start (C++ function)

 	richdem::ProgressBar::stop (C++ function)

 	richdem::ProgressBar::time_it_took (C++ function)

 	richdem::ProgressBar::timer (C++ member)

 	richdem::ProgressBar::total_work (C++ member)

 	richdem::ProgressBar::update (C++ function)

 	richdem::ProgressBar::work_done (C++ member)

 	richdem::rand_engine (C++ function)

 	richdem::RandomEngineState (C++ type)

 	richdem::rdCompileTime (C++ function)

 	richdem::rdHash (C++ function)

 	richdem::RDLOGfunc (C++ function)

 	richdem::resolve_flats_barnes (C++ function)

 	richdem::resolve_flats_barnes_dinf (C++ function)

 	richdem::ResolveFlatsEpsilon (C++ function)

 	richdem::ResolveFlatsEpsilon_Barnes2014 (C++ function)

 	richdem::ResolveFlatsFlowdirs_Barnes2014 (C++ function)

 	richdem::SaveRandomState (C++ function)

 	richdem::seed_rand (C++ function)

 	richdem::SELECTIVE_BREACHING (C++ enumerator)

 	richdem::SetRandomState (C++ function)

 	richdem::sgn (C++ function)

 	richdem::SQRT2 (C++ member)

 	richdem::StreamLogger (C++ class)

 	richdem::StreamLogger::file (C++ member)

 	richdem::StreamLogger::flag (C++ member)

 	richdem::StreamLogger::func (C++ member)

 	richdem::StreamLogger::line (C++ member)

 	richdem::StreamLogger::operator<< (C++ function), [1]

 	richdem::StreamLogger::ss (C++ member)

 	richdem::StreamLogger::StreamLogger (C++ function)

 	richdem::StreamLogger::~StreamLogger (C++ function)

 	richdem::TA_aspect (C++ function)

 	richdem::TA_CTI (C++ function)

 	richdem::TA_curvature (C++ function)

 	richdem::TA_planform_curvature (C++ function)

 	richdem::TA_profile_curvature (C++ function)

 	richdem::TA_Setup_Curves_Vars (C++ class)

 	richdem::TA_Setup_Curves_Vars::D (C++ member)

 	richdem::TA_Setup_Curves_Vars::E (C++ member)

 	richdem::TA_Setup_Curves_Vars::F (C++ member)

 	richdem::TA_Setup_Curves_Vars::G (C++ member)

 	richdem::TA_Setup_Curves_Vars::H (C++ member)

 	richdem::TA_Setup_Curves_Vars::L (C++ member)

 	richdem::TA_Setup_Vars (C++ class)

 	richdem::TA_Setup_Vars::a (C++ member)

 	richdem::TA_Setup_Vars::b (C++ member)

 	richdem::TA_Setup_Vars::c (C++ member)

 	richdem::TA_Setup_Vars::d (C++ member)

 	richdem::TA_Setup_Vars::e (C++ member)

 	richdem::TA_Setup_Vars::f (C++ member)

 	richdem::TA_Setup_Vars::g (C++ member)

 	richdem::TA_Setup_Vars::h (C++ member)

 	richdem::TA_Setup_Vars::i (C++ member)

 	richdem::TA_slope_degrees (C++ function)

 	richdem::TA_slope_percentage (C++ function)

 	richdem::TA_slope_radians (C++ function)

 	richdem::TA_slope_riserun (C++ function)

 	richdem::TA_SPI (C++ function)

 	richdem::Terrain_Aspect (C++ function)

 	richdem::Terrain_Curvature (C++ function)

 	richdem::Terrain_Planform_Curvature (C++ function)

 	richdem::Terrain_Profile_Curvature (C++ function)

 	richdem::Terrain_Slope_Degree (C++ function)

 	richdem::Terrain_Slope_Percent (C++ function)

 	richdem::Terrain_Slope_Radian (C++ function)

 	richdem::Terrain_Slope_RiseRun (C++ function)

 	richdem::TerrainCurvatureSetup (C++ function)

 	richdem::TerrainProcessor (C++ function)

 	richdem::TerrainSetup (C++ function)

 	richdem::TIME_USE (C++ enumerator)

 	richdem::Timer (C++ class)

 	richdem::Timer::accumulated (C++ function)

 	richdem::Timer::accumulated_time (C++ member)

 	richdem::Timer::clock (C++ type)

 	richdem::Timer::lap (C++ function)

 	richdem::Timer::reset (C++ function)

 	richdem::Timer::running (C++ member)

 	richdem::Timer::second (C++ type)

 	richdem::Timer::start (C++ function)

 	richdem::Timer::start_time (C++ member)

 	richdem::Timer::stop (C++ function)

 	richdem::Timer::timediff (C++ function)

 	richdem::Timer::Timer (C++ function)

 	richdem::Topology (C++ type)

 	richdem::TopologyName (C++ function)

 	richdem::trimStr (C++ function)

 	richdem::uniform_bits (C++ function)

 	richdem::uniform_rand_int (C++ function)

 	richdem::uniform_rand_real (C++ function)

 	richdem::UNVISITED (C++ enumerator)

 	richdem::VISITED (C++ enumerator)

 	richdem::WARN (C++ enumerator)

 	richdem::where_do_i_flow (C++ function)

S

 	
 	SaveGDAL() (in module richdem)

 	
 	SQUARE_EDGE (C++ enumerator)

 	std (C++ type)

T

 	
 	TerrainAttribute() (in module richdem)

X

 	
 	x_max (C++ member)

 	
 	XBIG (C macro)

Y

 	
 	y_max (C++ member)

 	
 	YBIG (C macro)

 _images/depression_eps_diff-4.png
10

_images/depression_filled_eps_diff-5.png
006

005

004

003

002

001

_images/depression_complete_breached_original_diff-3.png
025
050
075
100
125
150
175
200

_images/depression_complete_original_diff-3.png

depression_complete_breached_original_diff-3.hires.png
0.00

-0.25

-0.50

-0.75

-1.00

-1.25

-1.50

-1.75

—2.00

depression_complete_breached_original_diff-3.png
025
050
075
100
125
150
175
200

depression_complete-2.hires.png
1020

1015

1010

1005

1000

995

990

985

_images/depression_original-1.png

depression_complete-2.png
1020

1015

1010

1005

1000

995

990

85

_images/flat_resolution_barnes2014_epsilon-2.png
012

010

008

006

004

002

depression_eps_diff-4.hires.png

depression_eps_diff-4.png
10

depression_complete_original_diff-3.hires.png

depression_complete_original_diff-3.png

depression_filled_eps_diff-5.hires.png
0.06

0.05

0.04

0.03

0.02

0.01

depression_filled_eps_diff-5.png
006

005

004

003

002

001

_images/depression_breach_original-1.png

_images/depression_complete-2.png
1020

1015

1010

1005

1000

995

990

85

_images/beauford_example-1.png

_images/breaching_complete-2.png

nav.xhtml

 Table of Contents

 		
 RichDEM — High-Performance Terrain Analysis

 		
 RichDEM

 		
 Documentation

 		
 Design Philosophy

 		
 Parsable Output

 		
 Citing RichDEM

 		
 Ways To Use It

 		
 Python package from PyPI

 		
 Python package from source

 		
 As A Command-line Tool

 		
 As A Library

 		
 As A Handy Collection of Tools

 		
 For Processing Large Datasets

 		
 Concepts

 		
 Gridded Data

 		
 Metadata

 		
 Geotransform

 		
 NoData values

 		
 Processing History

 		
 In-Place Operations

 		
 Topology

 		
 Example DEMs

 		
 Loading Data

 		
 Python

 		
 GDAL

 		
 NumPy

 		
 Saved NumPy Arrays

 		
 C++

 		
 Depression-Filling

 		
 Depressions, Pits, and Sinks

 		
 Original DEM

 		
 Complete Filling

 		
 Epsilon Filling

 		
 Depression-Breaching

 		
 Depressions, Pits, and Sinks

 		
 Original DEM

 		
 Complete Breaching

 		
 Flat Resolution

 		
 Barnes (2014) Flat Resolution

 		
 Elevation Adjustment

 		
 Flow Metric Adjustment

 		
 Flow Metrics

 		
 Flow Coordinate System

 		
 Convergent and Divergent Metrics

 		
 Note on the examples

 		
 D8 (O’Callaghan and Mark, 1984)

 		
 D4 (O’Callaghan and Mark, 1984)

 		
 Rho8 (Fairfield and Leymarie, 1991)

 		
 Rho4 (Fairfield and Leymarie, 1991)

 		
 Quinn (1991)

 		
 Freeman (1991)

 		
 Holmgren (1994)

 		
 D∞ (Tarboton, 1997)

 		
 Side-by-Side Comparisons of Flow Metrics

 		
 Accessing Flow Proportions Directly

 		
 Flow Accumulation

 		
 From Flow Proportions

 		
 Terrain Attributes

 		
 Slope

 		
 Aspect

 		
 Profile Curvature

 		
 Planform Curvature

 		
 Curvature

 		
 Python Examples

 		
 Depression-filling a DEM and saving it

 		
 Comparing filled vs. unfilled DEMs

 		
 The rdarray class

 		
 Using RichDEM without GDAL

 		
 RichDEM C++ Reference

 		
 RichDEM Python Reference

 		
 Testing Methodology

 		
 Correctness

 		
 Specific Algorithms

 		
 Publications

 		
 Sponsors

 		
 Feedback

 		
 Release Steps

 		
 Updating Documentation

 		
 Updating Wheels

 		
 Updating Source Dist

depression_original-1.hires.png
1020

1015

1010

1005

1000

995

990

985

depression_original-1.png

flat_resolution_barnes2014_epsilon-2.hires.png
~ o © © = o~
— — S o S o
S S S S S S

_static/up-pressed.png

flat_resolution_barnes2014_epsilon-2.png
012

010

008

006

004

002

_static/up.png

flat_resolution_dep_fill_epsilon-1.hires.png
0.06

0.05

0.04

0.03

0.02

0.01

_static/plus.png

_static/minus.png

flat_resolution_dep_fill_epsilon-1.png
006

005

004

003

002

001

flat_resolution_diff_df_b2014-3.hires.png
© n = m o~ o
o o S o o o
S S S S S S

flow_accum_circle_weights-3.png
3500

3000

2500

2000

1500

1000

s00

flow_accum_from_props-5.hires.png

flat_resolution_diff_df_b2014-3.png
006

005

004

003

002

001

flow_accum_circle_weights-3.hires.png
3500

3000

2500

2000

1500

1000

500

flow_accum_location_weights-4.png
16000

14000

12000

10000

000

6000

4000

2000

flow_accum_one-1.hires.png
800

700

600

500

400

300

200

100

flow_accum_from_props-5.png

flow_accum_location_weights-4.hires.png
16000

14000

12000

10000

8000

6000

- 4000

2000

flow_accum_random_weights-2.hires.png
400

350

300

250

200

150

100

- 50

flow_accum_random_weights-2.png
400

0

300

20

200

150

100

50

flow_accum_one-1.png
800

700

600

s00

400

300

200

100

flow_metric_comparison-9.png

flow_metric_d4-2.hires.png
200

175

150

125

100

F75

- 50

- 25

flow_metric_comparison-9.hires.png

flow_metric_d8-1.png
800

700

600

s00

400

300

200

100

flow_metric_d4-2.png
200

s

150

125

100

15

50

=

flow_metric_d8-1.hires.png
800

700

600

500

400

300

200

100

flow_metric_holmgren1994-7.hires.png
200

175

150

125

100

F75

- 50

- 25

flow_metric_holmgren1994-7.png
200

s

150

125

100

15

50

=

flow_metric_freeman1991-6.hires.png

flow_metric_freeman1991-6.png
200

s

150

125

100

15

50

=

flow_metric_quinn_freeman_compare-10.hires.png
60

40

20

=20

—40

-60

-80

—100

flow_metric_quinn_freeman_compare-10.png
20
40
50
80
100

flow_metric_quinn1991-5.hires.png

flow_metric_quinn1991-5.png
200

s

150

125

100

15

50

=

flow_metric_rho4-4.hires.png
200

=3
2
= 175
=
E:
e
i 150
E
'y
E 125
i
100
- 75
- 50

- 25

_images/flow_metric_freeman1991-6.png
200

s

150

125

100

15

50

=

flow_metric_rho4-4.png
200

s

150

125

100

15

50

=

_images/flow_metric_quinn1991-5.png
200

s

150

125

100

15

50

=

_images/flow_metric_holmgren1994-7.png
200

s

150

125

100

15

50

=

_images/flow_metric_rho4-4.png
200

s

150

125

100

15

50

=

_images/flow_metric_quinn_freeman_compare-10.png
20
40
50
80
100

_images/flow_accum_one-1.png
800

700

600

s00

400

300

200

100

_images/flow_accum_location_weights-4.png
16000

14000

12000

10000

000

6000

4000

2000

_images/flow_metric_comparison-9.png

_images/flow_accum_random_weights-2.png
400

0

300

20

200

150

100

50

_images/flow_metric_d8-1.png
800

700

600

s00

400

300

200

100

_images/flow_metric_d4-2.png
200

s

150

125

100

15

50

=

depression_breach_original-1.hires.png
1020

1015

1010

1005

1000

995

990

985

depression_breach_original-1.png

flow_metric_tarboton1997-8.png
200

s

150

125

100

15

50

=

beauford_example-1.hires.png
1020

1015

1010

1005

1000

995

990

985

flow_metric_rho8-3.png
200

s

150

125

100

15

50

=

flow_metric_tarboton1997-8.hires.png
200

175

150

125

100

F75

- 50

- 25

breaching_complete-2.png

beauford_example-1.png

breaching_complete-2.hires.png
1020

1015

1010

1005

1000

995

990

985

_images/flat_resolution_diff_df_b2014-3.png
006

005

004

003

002

001

_images/flat_resolution_dep_fill_epsilon-1.png
006

005

004

003

002

001

_images/flow_accum_from_props-5.png

_images/flow_accum_circle_weights-3.png
3500

3000

2500

2000

1500

1000

s00

flow_metric_rho8-3.hires.png
200

175

150

125

100

F75

- 50

- 25

terrain_curvature-5.hires.png
80

terrain_aspect-2.hires.png
350

300

250

200

150

100

terrain_aspect-2.png
0

300

20

200

150

100

_static/comment-bright.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/file.png

_images/terrain_slope-1.png

_images/terrain_profile_curvature-3.png
W

2

_static/ajax-loader.gif

terrain_slope-1.hires.png

terrain_slope-1.png

terrain_profile_curvature-3.hires.png

terrain_profile_curvature-3.png
W

2

_images/Lindsay2016_depression_typology.png
Sink
An area of undefined lateral
flow or internal drainage

I -
Flat Area Closed Topographic Depression
One or more DEM cells for Bow-like feature of internal drainage;
which the lowest neighbor is Includes both artifact and real features
of equal elevation —’7
Flat-bottomed Depression Pit Cell
Asingle DEM cell lower

than all of its neighbors

Isolated Pit
Pit is not contained within
alarger depression

Depression-bottom Pit
Pitis contained within a
larger depression

Figure 1. A typology of features found within DEMs that interrupt modelled flow paths and require flow enforcement

_images/ta_profile_curvature.png
N

_images/ta_planform_curvature.png
b @

_images/terrain_aspect-2.png
0

300

20

200

150

100

_images/ta_standard_curvature.png

_images/terrain_planform_curvature-4.png
EY

2

10

-10

_images/terrain_curvature-5.png
£

&

W

2

_images/flow_metric_tarboton1997-8.png
200

s

150

125

100

15

50

=

_images/flow_metric_rho8-3.png
200

s

150

125

100

15

50

=

_images/fm_dinfinity.png
Column indices
j1 i i+l
- Proportion of flow to pixel. - -,
(l.-l. j)is “z/(o‘x'_“’z)' Proportion of
flow to pixel
(-1, j+) is
u]/.(m 1+°'z)'

i-1

counter-clockwise
angle from east.

Row indices
i

i+l

Figure 2. Flow direction defined as steepest downward slope
on planar triangular facets on a block-centered grid.

_images/fm_dinf_comp.png
etal, (1991) procedure, MS.

B. Quinn

.

\\

E. New Procedure, Do

e

=

Figure 7. Dependence maps for panar surfsce. Gray scle (0

wiit, 1 black) ndcaesthe facion of cach el pelope (o

e circled Dhal

_images/fm_rho8_comp.png
)

terrain_planform_curvature-4.hires.png

terrain_planform_curvature-4.png
EY

2

10

-10

terrain_curvature-5.png
£

&

W

2

